精英家教网 > 高中数学 > 题目详情
7.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则△CDF的周长与△AEF的周长之比为(  )
A.1:3B.3:1C.1:2D.2:1

分析 证明△CDF∽△AEF,可求△CDF的周长与△AEF的周长之比.

解答 解:∵四边形ABCD是平行四边形,EB=2AE,
∴AB∥CD,CD=3AE,
∴△CDF∽△AEF,
∴△CDF的周长与△AEF的周长之比=CD:AE=3:1.
故选B.

点评 本题考查三角形相似的判断,考查学生的计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知椭圆4x2+y2=1及直线y=x+m.
(1)直线和椭圆有公共点,求实数m的取值范围;
(2)若m=$\frac{\sqrt{2}}{2}$,求直线被椭圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若不等式|x+2|-|x-1|≥a3-4a2-3对任意实数x恒成立,则实数a的取值范围是(  )
A.(-∞,4]B.(-∞,2]C.[4,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\frac{1}{2}$ax2+lnx,其中a∈R.
(1)求函数f(x)的单调区间;
(2)若a<-1,f(x)在(0,1]上的最大值为-1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{lnx}{x}$.
(1)当e≤x≤e2时,求函数f(x)的最小值;
(2)已知函数g(x)=2x-$\frac{ax(x-1)}{lnx}$,且f(x)g(x)≤0恒成立,求实数a的值;
(3)某同学发现:存在正实数m、n(m<n),使mn=nm,试问:他的发现是否正确?若不正确,则请说明理由;若正确,则请直接写出m的取值范围,而不需要解答过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=$\frac{2}{3}$x3-2ax2-3x(a∈R).
(Ⅰ)若f(x)在区间(-1,1)内为减函数,求实数a的取值范围;
(Ⅱ)对于实数a的不同取值,试讨论y=f(x)在(-1,1)内的极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,已知△ABC周长为2,连接△ABC三边的中点构成第二个三角形,再连接第二个对角线三边中点构成第三个三角形,依此类推,第2003个三角形周长为(  )
A.$\frac{1}{2002}$B.$\frac{1}{2001}$C.$\frac{1}{{2}^{2002}}$D.2${\;}^{\frac{1}{2001}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3+bx2+cx,其导函数y=f′(x)的图象(如图所示)经过点(1,0),(2,0).
(Ⅰ)求f(x)的解析式;
(Ⅱ)若方程f(x)-m=0恰有2个根,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x+$\frac{1}{x-a}$+$\frac{1}{x-b}$(a,b为实常数).
(Ⅰ)若a+b=0,判断函数f(x)的奇偶性,并加以证明;
(Ⅱ)记M=$\left\{\begin{array}{l}{a,b<a}\\{b,b≥a}\end{array}\right.$,A=$\frac{a+b}{2}$,求实数λ的取值范围,使得方程f(x)=$\frac{λ}{x-A}$+A在区间(M,+∞)上无解.

查看答案和解析>>

同步练习册答案