精英家教网 > 高中数学 > 题目详情
18.若不等式|x+2|-|x-1|≥a3-4a2-3对任意实数x恒成立,则实数a的取值范围是(  )
A.(-∞,4]B.(-∞,2]C.[4,+∞)D.[2,+∞)

分析 利用绝对值的意义,求得|x+2|-|x-1|的最小值为-3,可得-3≥a3-4a2-3,由此求得实数a的取值范围.

解答 解:∵不等式|x+2|-|x-1|≥a3-4a2-3对任意实数x恒成立,而|x+2|-|x-1|表示数轴上的x对应点到-2对应点的距离减去它到1对应点的距离,
故|x+2|-|x-1|的最小值为-3,
∴-3≥a3-4a2-3,即a3-4a2 ≤0,求得a≤4,
故选:A.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=a+bcosx+csinx的图象经过点A(0,1)及$B(\frac{π}{2},1)$
(1)已知b>0,求f(x)的单调递减区间;
(2)已知$x∈(0,\frac{π}{2})$时,|f(x)|≤2恒成立,求实数a的取值范围;
(3)当a取上述范围内的最大整数值时,若有实数m,n,φ,使得mf(x)+nf(x-φ)=1对于x∈R恒成立,求m,n,φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数m,n满足2m-n=3.
(1)若|m|+|n+3|≥9,求实数m的取值范围;
(2)求$|{\frac{5}{3}m-\frac{1}{3}n}|+|{\frac{1}{3}m-\frac{2}{3}n}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数g(x)满足g(x)=g($\frac{1}{x}$),当x∈[$\frac{1}{3}$,1]时,g(x)=-3lnx.若函数f(x)=g(x)-mx在区间[$\frac{1}{3}$,3]上有三个不同的零点,则实数m的取值范围是(  ),则实数m的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[ln3,$\frac{3}{e}$)C.[ln3,$\frac{1}{e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为减少“舌尖上的浪费”,我校的学生会干部对一中,城关中学的食堂用餐的学生能否做到“光盘”进行调查.现从中随机抽取男、女生各25名进行问卷调查,得到了如下列联表:
 男性女性合计
做不到“光盘”18  
能做到“光盘” 14 
合  计  50
(Ⅰ)补全相应的2×2列联表;
(Ⅱ)运用独立性检验的思想方法分析:能否在犯错误的概率不超过0.05的前提下认为在学校食堂用餐的学生能做到“光盘”与性别有关?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某校在高二文理分科时,随机调查了该校高二的一些学生,得到数据如表:
文科理科
数学优秀1013
数学不优秀207
为了检验科类与数学是否优秀有关系,根据表中的数据,得到K2≈4.84.因为K2>3.841,所以断定科类与数学是否优秀有关系,这种判断出错的概率不超过0.05.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示是y=f(x)的导数图象,则正确的判断是(  )
①f(x)在(-3,1)上是增函数;
②x=-1是f(x)的极小值点;
③x=2是f(x)的极小值点;
④f(x)在(2,4)上是减函数,在(-1,2)上是增函数.
A.①②④B.②④C.③④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,在平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于点F,则△CDF的周长与△AEF的周长之比为(  )
A.1:3B.3:1C.1:2D.2:1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设a>1,若关于x的方程ax=x无实根,则实数a的取值范围为$({e^{\frac{1}{e}}},+∞)$.(用区间表示)

查看答案和解析>>

同步练习册答案