精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的函数,f(2x-3)=x2+x+1,则f(x)=
 
考点:函数解析式的求解及常用方法
专题:函数的性质及应用
分析:利用换元法,设2x-3=t,求出f(t),即得f(x)的解析式.
解答: 解:根据题意,设2x-3=t,(t∈R);
∴x=
t+3
2

∴f(t)=(
t+3
2
)
2
+
t+3
2
+1
=
1
4
t2+2t+
19
4

即f(x)=
1
4
x2+2x+
19
4
,(x∈R);
故答案为:
1
4
x2+2x+
19
4
,(x∈R).
点评:本题考查了求函数解析式的问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若随机变量ξ~N(2,1),且P(ξ>3)=0.1587,则P(ξ>1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=log2x在点(1,0)处的切线与坐标轴所围三角形的面积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的直观图是边长为2的正三角形,则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=32x-(k+1)3x+2,当x∈R时,f(x)恒为正值,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且an=n•2n-1,则Sn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①定义在[a,b]上的偶函数以f(x)=x2+(a+5)x+b最小值为5;
②若logm3<logn3<0,则0<n<m<1;
③若函数f(x)是奇函数,则函数f(x+1)的图象关于点A(1,0)对称;
④已知
2
2-4
+
6
6-4
=2,
5
5-4
+
3
3-4
=2
7
7-4
+
1
1-4
=2,
10
10-4
+
-2
-2-4
=2
,依照以上各式的规律,得到一般性的等式为
n
n-4
+
8-n
(8-n)-4
=2,(n≠4)
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足约束条件
x>0
4x+3y≤4
y≥0
,则w=
y+1
x
的最小值是(  )
A、-2B、2C、-1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,对任意a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;
(2)对任意a,b,c∈R,(a*b)*c=(ab)*c+(a*c)+(b*c)-2c.
如:3*2=(3*2)*0=(3×2)*0+(3*0)+(2*0)-2×0=6+3+2-0=11.
关于函数f(x)=(2x)*
1
2x
的性质,有如下说法:
①函数f(x)的最小值为3;     
②函数f(x)的图象关于点(0,1)成中心对称;
③函数f(x)为奇函数;   
④函数f(x)的单调递增区间为(-∞,-
1
2
),  &(
1
2
,+∞)

其中所有正确说法的个数为(  )
A、0B、1C、2D、3

查看答案和解析>>

同步练习册答案