精英家教网 > 高中数学 > 题目详情
18.如果点P(x,y)在平面区域$\left\{\begin{array}{l}2x-y+2≥0\\ x-2y+1≤0\\ x+y-2≤0\end{array}\right.$上,则x2+(y+1)2的最大值和最小值分别是(  )
A.3,$\frac{3}{{\sqrt{5}}}$B.9,$\frac{9}{5}$C.9,2D.3,$\sqrt{2}$

分析 画出满足条件的平面区域,结合x2+(y+1)2的几何意义求出其最大值和最小值即可.

解答 解:如图,先作出点P(x,y)所在的平面区域:
x2+(y+1)2表示动点P到定点Q(0,-1)距离的平方,
当点P在(-1,0)时,|PQ|2=2,
而点Q到直线x-2y+1=0的距离的平方为$\frac{9}{5}<2$;
当点P在(0,2)时,离Q最远,|PQ|2=9;
因此x2+(y+1)2的最大值为9,最小值为$\frac{9}{5}$.
故选:B.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.为了了解居民家庭网上购物消费情况,某地区调查了10000户家庭的月消费金额(单位:元),所有数据均在区间[0,4500]上,其频率分布直方图如图所示,则被调查的10000户家庭中,有750户月消费额在1000元以下

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某校选定甲、乙、丙、丁、戊共5名教师到3个边远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,则不同的选派方案共有(  )
A.27种B.30种C.33种D.36种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图.在三棱柱ABC-A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,$\overrightarrow{AM}$=$\frac{2}{3}$$\overrightarrow{AC}$.
(I)证明:CB1∥平面A1EM;
(Ⅱ)若二面角C1-A1E-M的余弦值为$\frac{\sqrt{5}}{5}$,求AA1的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-3≤0}\\{y≥1}\end{array}\right.$若目标函数z=2x+y的最小值为a,最大值为b,则函数y=x-$\frac{4}{x}$在[a,b]上的值域为(  )
A.(-∞,3)B.[3,$\frac{21}{5}$].C.[-3,3]D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,则f(x)的递增区间为(  )
A.$({-\frac{π}{12}+2kπ,\frac{5π}{12}+2kπ})$,k∈ZB.$({-\frac{π}{12}+kπ,\frac{5π}{12}+kπ})$,k∈Z
C.$({-\frac{π}{6}+2kπ,\frac{5π}{6}+2kπ})$,k∈ZD.$({-\frac{π}{6}+kπ,\frac{5π}{6}+kπ})$,k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=2sin(4x+φ)(φ<0)的图象关于直线x=$\frac{π}{24}$对称,则φ的最大值为(  )
A.-$\frac{5π}{3}$B.-$\frac{2π}{3}$C.-$\frac{π}{6}$D.-$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足:$|{\overrightarrow a}|=2,|{\overrightarrow b}|=4,\overrightarrow c=\overrightarrow a-\overrightarrow b$,且$\overrightarrow c⊥\overrightarrow a$
(1)求向量$\overrightarrow a$与$\overrightarrow b$的夹角;
(2)求$\overrightarrow a•(\overrightarrow a+3\overrightarrow b)$及$|{3\overrightarrow a+\overrightarrow b}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解不等式:2-|x|<$\sqrt{x+3}$.

查看答案和解析>>

同步练习册答案