精英家教网 > 高中数学 > 题目详情
7.设不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x-y-6≤0}\\{x+3y-6≤0}\end{array}\right.$表示的平面区域为D,若函数y=logax(a>0且a≠1)的图象上存在区域D上的点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$]∪[3,+∞)B.[$\frac{1}{2}$,1)∪[3,+∞)C.(0,$\frac{1}{2}$∪(1,3]D.[$\frac{1}{2}$,1)∪(1,3]

分析 结合二元一次不等式(组)与平面区域的关系画出其表示的平面区域,再利用函数y=logax(a>0且a≠1)的图象特征,结合区域的角上的点即可解决问题.

解答 解:作出不等式组对应的平面区域如图:
若0<a<1,则由图象可知点B在对数函数的图象或图象的下面,
由$\left\{\begin{array}{l}{3x+y-10=0}\\{x-y-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=-2}\end{array}\right.$,即B(4,-2),
此时满足loga4≥-2,
解得0<a≤$\frac{1}{2}$.
若a>1,当A在对数函数的图象或图象的上方时,满足条件,
由$\left\{\begin{array}{l}{3x+y-10=0}\\{x+3y-6=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=1}\end{array}\right.$,即A(3,1),
此时满足loga3≤1,解得a≥3,
综上0<a≤$\frac{1}{2}$或a≥3.
∴实数a的取值范围是(0,$\frac{1}{2}$]∪[3,+∞),
故选:A.

点评 本题主要考查线性规划的应用,利用对数函数的图象和性质,通过数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若a∈R,则“a=1”是“直线x+y+a=0与圆x2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}中,a1=12,公差为d,a3>0,当且仅当n=3时|an|最小.
(Ⅰ)求公差d的取值范围;
(Ⅱ)若d∈Z(Z为整数集),求数列{|an|}的前n项和Sn的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知an+1=$\frac{2{a}_{n}}{1+{a}_{n}}$,若a1=$\frac{1}{2}$
(1)求a2,a3,a4,a5的值,并猜想an的表达式;
(2)并用数学归纳法证明(1)中的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={(x,y)|x2+y2=1},B={(x,y)|y=2x},则A∩B子集的个数是(  )
A.2B.3C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.国家AAAAA级八里河风景区五一期间举办“管仲杯”投掷飞镖比赛.每3人组成一队,每人投掷一次.假设飞镖每次都能投中靶面,且靶面上每点被投中的可能性相同.某人投中靶面内阴影区域记为“成功”(靶面正方形ABCD如图所示,其中阴影区域的边界曲线近似为函数y=Asinx的图象).每队有3人“成功”获一等奖,2人“成功”获二等奖,1人“成功”获三等奖,其他情况为鼓励奖(即四等奖)(其中任何两位队员“成功”与否互不影响).
(Ⅰ)求某队员投掷一次“成功”的概率;
(Ⅱ)设X为某队获奖等次,求随机变量X的分布列及其期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题p:“存在x0∈[1,+∞),使得(log23)x0≥1”,则命题p的否定是(  )
A.存在x0∈[1,+∞),使得(log23)x0<1B.存在x0∈[1,+∞),使得(log23)x0≥1
C.任意x∈[1,+∞),都有(log23)x<1D.任意x∈[1,+∞),都有(log23)x≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线$\left\{\begin{array}{l}x=2+t\\ y=1+t\end{array}\right.$(t为参数)与曲线M:ρ=2cosθ交于P,Q两点,则|PQ|=(  )
A.1B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=$\frac{{a}^{2}+asinx+2}{{a}^{2}+acosx+2}$(x∈R)的最大值为M(a),最小值为m(a),则(  )
A.?a∈R,M(a)•m(a)=1B.?a∈R,M(a)+m(a)=2C.?a0∈R,M(a0)+m(a0)=1D.?a0∈R,M(a0)•m(a0)=2

查看答案和解析>>

同步练习册答案