精英家教网 > 高中数学 > 题目详情
2.设集合A={(x,y)|x2+y2=1},B={(x,y)|y=2x},则A∩B子集的个数是(  )
A.2B.3C.8D.4

分析 画出两函数的图象,找出交点个数,即可确定出两交集个数即可.

解答 解:集合A中x2+y2=1,表示原点为圆心,1为半径的圆,集合B中y=2x,表示指数函数,
在同一个坐标系中画出图象,得到两函数有两个交点,
则A∩B子集的个数是22=4.
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知矩阵A的逆矩阵A-1=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$.求曲线xy=1在矩阵A所对应的变换作用下所得的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四棱柱ABCD-A1B1C1D1中,侧棱DD1⊥底面ABCD,P为底面ABCD内的一个动点,当△D1PC的面积为定值b(b>0)时,点P在底面ABCD上的运动轨迹为(  )
A.椭圆B.双曲线C.抛物线D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线C的方程为$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐 标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)已知M是曲线C上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b,c是△ABC对边,且a+b=$\sqrt{3}$csinA+ccosA,为BC的中点,且AD=2,求△ABC最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设不等式组$\left\{\begin{array}{l}{3x+y-10≥0}\\{x-y-6≤0}\\{x+3y-6≤0}\end{array}\right.$表示的平面区域为D,若函数y=logax(a>0且a≠1)的图象上存在区域D上的点,则实数a的取值范围是(  )
A.(0,$\frac{1}{2}$]∪[3,+∞)B.[$\frac{1}{2}$,1)∪[3,+∞)C.(0,$\frac{1}{2}$∪(1,3]D.[$\frac{1}{2}$,1)∪(1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知四边形ABCD是边长为$\sqrt{3}$的菱形,对角线AC=2$\sqrt{2}$.分别过点B,C,D向平面ABCD外作3条相互平行的直线BE、CF、DG,其中点E,F在平面ABCD同侧,CF=8,且平面AEF与直线DG相交于点G,GE∩AF=P,AC∩BD=O,连结OP.
(Ⅰ)证明:OP∥DG;
(Ⅱ)当点F在平面ABCD内的投影恰为O点时,求四面体FACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥A-BCED中,△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,M为棱EA的中点,CE=2BD.
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求证:平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=mex-$\frac{lnx}{x}$-nexx3,且函数f(x)在点(1,e)处的切线与直线x-(2e+1)y-3=0垂直,求证:当x∈(0,1)时,f(x)>0.

查看答案和解析>>

同步练习册答案