分析 根据矩阵变换的特点代入计算即可.
解答 解:设xy=1上任意一点(x,y)在矩阵A所对应的变换作用下对应的点(x′,y′),
则$[\begin{array}{l}{x}\\{y}\end{array}]$=A-1$[\begin{array}{l}{x′}\\{y′}\end{array}]$=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$$[\begin{array}{l}{x′}\\{y′}\end{array}]$,
由此得$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}(x′+y′)}\\{y=\frac{\sqrt{2}}{2}(y′-x′)}\end{array}\right.$,
代入方程xy=1,得y′2-x′2=2.
所以xy=1在矩阵A所对应的线性变换作用下的曲线方程为y2-x2=2.
点评 本题考查矩阵的变换等知识,注意解题方法的积累,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{2}$) | B. | (-∞,$\frac{\sqrt{2}}{2}$) | C. | (-∞,$\sqrt{2}$) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③ | D. | ③④ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com