精英家教网 > 高中数学 > 题目详情
1.若函数f(x)的导函数在区间(a,b)上的图象关于直线x=$\frac{a+b}{2}$对称,则函数y=f(x)在区间[a,b]上的图象可能是(  )
A.   B.   C.   D.
A.B.C.D.③④

分析 对于①②,直接由图象得出在a处与b处切线斜率不相等,即可排除答案;
对于③,原函数为一次函数,其导函数为常数函数即可知道其满足要求;
对于④,先由图象找到对称中心即可判断其成立

解答 解:因为函数y=f(x)的导函数在区间(a,b)上的图象关于直线x=$\frac{a+b}{2}$对称,即导函数要么图象无增减性,要么是在直线x=$\frac{a+b}{2}$两侧单调性相反;
对于①,由图得,在a处切线斜率最小,在b处切线斜率最大,故导函数图象不关于直线x=$\frac{a+b}{2}$对称,故①不成立;
对于②,由图得,在a处切线斜率最大,在b处切线斜率最小,故导函数图象不关于直线x=$\frac{a+b}{2}$对称,故②不成立;
对于③,由图得,原函数为一次函数,其导函数为常数函数,故导函数图象关于直线 x=$\frac{a+b}{2}$对称,故③成立;
对于④,由图得,原函数有一对称中心,在直线x=$\frac{a+b}{2}$与原函数图象的交点处,故导函数图象关于直线 x=$\frac{a+b}{2}$对称,故④成立;
所以,满足要求的有③④.
故选:D.

点评 本题主要考查函数的单调性与其导函数之间的关系.做这一类型题目,要注意运用课本定义,是对课本知识的考查,属于基础题,但也是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,3,x},B={1,$\sqrt{x}$},A∩B=B,则x=(  )
A.0或3B.3或9C.0或9D.1或9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知矩阵A的逆矩阵A-1=$[\begin{array}{l}{\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\\{-\frac{\sqrt{2}}{2}}&{\frac{\sqrt{2}}{2}}\end{array}]$.求曲线xy=1在矩阵A所对应的变换作用下所得的曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某中学共有1000名文科学生参加了该市高三第一次质量检查的考试,其中数学成绩如表所示:
数学成绩分组[50,70)[70,90)[90,110)[110,130)[130,150]
人数60x400360100
(Ⅰ)为了了解同学们前段复习的得失,以便制定下阶段的复习计划,年级将采用分层抽样的方法抽取100名同学进行问卷调查.甲同学在本次测试中数学成绩为75分,求他被抽中的概率;
(Ⅱ)年级将本次数学成绩75分以下的学生当作“数学学困生”进行辅导,请根据所提供数据估计“数学学困生”的人数;
(Ⅲ)请根据所提供数据估计该学校文科学生本次考试的数学平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=ex-mx+1的图象为曲线C,若曲线C存在与直线y=ex垂直的切线,则实数m的取值范围是(  )
A.(-∞,$\frac{1}{e}$)B.($\frac{1}{e}$,+∞)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知正三棱锥S-ABC的侧棱SA,SB,SC两两互相垂直,D,E,F分别是它们的中点,SA=SB=SC=2,现从A,B,C,D,E,F六个点中任取三个点,加上点S,把这四个点每两个点相连后得到一个“空间体”,记这个“空间体”的体积为X(若点S与所取三点在同一平面内,则规定X=0).
(Ⅰ)求事件“X=0”的概率;
(Ⅱ)求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在四棱柱ABCD-A1B1C1D1中,侧棱DD1⊥底面ABCD,P为底面ABCD内的一个动点,当△D1PC的面积为定值b(b>0)时,点P在底面ABCD上的运动轨迹为(  )
A.椭圆B.双曲线C.抛物线D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知曲线C的方程为$\frac{x^2}{4}+\frac{y^2}{5}$=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐 标系,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=2\sqrt{2}$.
(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)已知M是曲线C上任意一点,求点M到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥A-BCED中,△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,M为棱EA的中点,CE=2BD.
(Ⅰ)求证:DM∥平面ABC;
(Ⅱ)求证:平面BDM⊥平面ECA.

查看答案和解析>>

同步练习册答案