精英家教网 > 高中数学 > 题目详情
11.已知集合A={1,3,x},B={1,$\sqrt{x}$},A∩B=B,则x=(  )
A.0或3B.3或9C.0或9D.1或9

分析 根据集合的基本运算进行求解即可.

解答 解:∵A∩B=B,
∴B⊆A,
则$\sqrt{x}$=3或$\sqrt{x}$=x,
解得x=9或x=0或x=1,
当x=1时,B={1,1}不成立,
综上x=9或x=0,
故选:C

点评 本题主要考查集合的基本运算,根据集合关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.在三维空间直角坐标系中,对其中任何一向量$\overrightarrow{x}$=(x1,x2,x3),定义范数||x||,它满足以下性质:
①||x||≥0,当且仅当x为零向量时,不等式取等号;
②对任意实数λ,||λx||=|λ|•||x||(注:此处点乘号为普通的乘号,无点乘意义);
③||x||+||y||≥||x+y||.
试求解以下问题:
在二维平面直角坐标系中,有向量$\overrightarrow{x}$=(x1,x2),下面给出的几个表达式中,可能表示向量$\overrightarrow{x}$的范数是②⑤(把所有正确的答案的序号都填上).
①$\sqrt{{{x}_{1}}^{2}}$+2x22
②$\sqrt{{{x}_{1}}^{2}+2{{x}_{2}}^{2}}$;
③$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$;
④$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2}$;
⑤$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.一个棱锥的三视图如图所示,则它的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F(x)=f(x)-x是偶函数,且f(2)=1,则f(-2)=(  )
A.4B.2C.-3D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某学校安排甲、乙、丙、丁四位同学参加数学、物理、化学竞赛,要求每位同学仅报一科,每科至少有一位同学参加,且甲、乙不能参加同一学科,则不同的安排方法有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知直线x-y+1=0与圆心为C的圆x2+y2+2x-4y+a=0相交于A,B两点,且AC⊥BC,则实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x3+ax2+x,a∈R.
(Ⅰ)若f(x)在[-1,1]上是增函数,求a的取值范围;
(Ⅱ)若a=0,对任意的x>0,总有f(x)<x(ex+k)成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{4}^{x},x≤0}\end{array}\right.$,则f(f(-1))的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)的导函数在区间(a,b)上的图象关于直线x=$\frac{a+b}{2}$对称,则函数y=f(x)在区间[a,b]上的图象可能是(  )
A.   B.   C.   D.
A.B.C.D.③④

查看答案和解析>>

同步练习册答案