分析 利用诱导公式、同角三角函数关系式求解.
解答 解:∵cos(π+α)=-$\frac{3}{5}$,且α∈(-$\frac{π}{2}$,0),
∴cos(π+α)=-cosα=-$\frac{3}{5}$,
∴cosα=$\frac{3}{5}$,sinα=-$\sqrt{1-(\frac{3}{5})^{2}}$=-$\frac{4}{5}$,
∴tan($\frac{3π}{2}$+α)=cotα=$\frac{cosα}{sinα}$=$\frac{\frac{3}{5}}{-\frac{4}{5}}$=-$\frac{3}{4}$.
故答案为:-$\frac{3}{4}$.
点评 本题考查三角函数值的求法,是基础题,解题时要认真审题,注意诱导公式、同角三角函数关系式的合理运用.
科目:高中数学 来源: 题型:选择题
| 8 | 3 | 4 |
| 1 | 5 | 9 |
| 6 | 7 | 2 |
| A. | 9 | B. | 8 | C. | 6 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com