精英家教网 > 高中数学 > 题目详情
5.设函数f(x)=kax-a-x(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值;
(2)已知a=3,若f(3x)≥λ•f(x)对于x∈[1,2]时恒成立.请求出 最大的整数λ

分析 (1)由奇函数的性质f(0)=0得k=2;
(2)根据a=3,将f(3x)≥λ•f(x)表示出来,利用换元法和参变量分离法,将不等式转化为λ≤t2+3对t∈[$\frac{8}{3}$,$\frac{80}{9}$]恒成立,利用二次函数的性质,求得t2+3的最小值,即可求得λ的取值范围,从而得到答案.

解答 解:(1)由奇函数的性质f(0)=0得k=2
(2)由题意,即33x+3-3x≥λ(3x-3-x),在x∈[1,2]时恒成立
令t=3x-3-x,x∈[1,2],则t∈[$\frac{8}{3}$,$\frac{80}{9}$],
则(3x-3-x)(32x+3-2x+1)≥λ(3x-3-x),x∈[1,2]恒成立,
即为t(t2+3)≥λ•t,t∈[$\frac{8}{3}$,$\frac{80}{9}$]恒成立,
λ≤t2+3,t∈[$\frac{8}{3}$,$\frac{80}{9}$],恒成立,当t=$\frac{8}{3}$时,(t2+3)min=$\frac{91}{9}$,
∴λ≤$\frac{91}{9}$,则λ的最大整数为10.,则λ的最大整数为10.

点评 本题考查函数的性质,考查了函数的恒成立问题,对于函数的恒成立问题,一般选用参变量分离法、最值法、数形结合法进行求解.本题选用了参变量分离的方法转化成二次函数求最值问题.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.下列两个变量中,具有相关关系的是(  )
A.正方体的体积棱长B.匀速行驶的汽车的行驶距离与时间
C.人的身高与体重D.人的身高与视力

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,某观测站C在城A的南偏西20°的方向,从城A出发有一条走向为南偏东40°的公路,在C处观测到距离C处31km的公路上的B处有一辆汽车正沿公路向A城驶去,行驶了20km后到达D处,测得C,D两处的距离为21km,则AC=24km.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某校共有17人获得北大、清华保送资格,具体人数如下:
竞赛学科数学物理化学
北大642
清华104
若随机从获取北大、清华保送资格的学生中各取一名,则至少1人是参加数学竞赛的概率为(  )
A.$\frac{1}{10}$B.$\frac{3}{5}$C.$\frac{15}{34}$D.$\frac{91}{136}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题:①如果x=y,则sinx=siny;②如果a>b,则a2>b2;③A,B是两个不同定点,动点P满足|PA|+|PB|是常数,则动点P的轨迹是椭圆.其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\frac{1}{{\sqrt{2-x}}}+\sqrt{x+2}$的定义域为(  )
A.{x|x≥-2}B.{x|x<2}C.{x|-2<x<2}D.{x|-2≤x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知角α的终边经过点$P({sin\frac{5π}{6},cos\frac{5π}{6}})$,则角α为第四象限角,与角α终边相同的最小正角是$\frac{5π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),F1,F2分别为其左右焦点,
(1)已知P,Q为椭圆C上两动点,直线PQ过点F2(c,0),且不垂直于x轴,△PQF1的周长为8,且椭圆的短轴长为2$\sqrt{3}$,求椭圆C的标准方程;
(2)已知A(a,0),B(0,b),B′(0,-b),F2(c,0),若直线AB⊥B′F2,求椭圆C的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=Asin(ωx+φ) (A>0,ω>0,|φ|<π)的 一段图象(如图)所示.
(1)求函数的解析式;
(2)当x∈[0,$\frac{π}{2}}$],求函数f(x)的最值,并且求使f(x)取得最值对应x的取值.

查看答案和解析>>

同步练习册答案