分析 (1)由奇函数的性质f(0)=0得k=2;
(2)根据a=3,将f(3x)≥λ•f(x)表示出来,利用换元法和参变量分离法,将不等式转化为λ≤t2+3对t∈[$\frac{8}{3}$,$\frac{80}{9}$]恒成立,利用二次函数的性质,求得t2+3的最小值,即可求得λ的取值范围,从而得到答案.
解答 解:(1)由奇函数的性质f(0)=0得k=2
(2)由题意,即33x+3-3x≥λ(3x-3-x),在x∈[1,2]时恒成立
令t=3x-3-x,x∈[1,2],则t∈[$\frac{8}{3}$,$\frac{80}{9}$],
则(3x-3-x)(32x+3-2x+1)≥λ(3x-3-x),x∈[1,2]恒成立,
即为t(t2+3)≥λ•t,t∈[$\frac{8}{3}$,$\frac{80}{9}$]恒成立,
λ≤t2+3,t∈[$\frac{8}{3}$,$\frac{80}{9}$],恒成立,当t=$\frac{8}{3}$时,(t2+3)min=$\frac{91}{9}$,
∴λ≤$\frac{91}{9}$,则λ的最大整数为10.,则λ的最大整数为10.
点评 本题考查函数的性质,考查了函数的恒成立问题,对于函数的恒成立问题,一般选用参变量分离法、最值法、数形结合法进行求解.本题选用了参变量分离的方法转化成二次函数求最值问题.属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 竞赛学科 | 数学 | 物理 | 化学 |
| 北大 | 6 | 4 | 2 |
| 清华 | 1 | 0 | 4 |
| A. | $\frac{1}{10}$ | B. | $\frac{3}{5}$ | C. | $\frac{15}{34}$ | D. | $\frac{91}{136}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≥-2} | B. | {x|x<2} | C. | {x|-2<x<2} | D. | {x|-2≤x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com