分析 (1)由题意可知:椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),焦点在x轴上,由椭圆的定义可知:丨PF1丨+丨PF2丨+丨QF1丨+丨QF2丨=4a=8,a=2,由2b=2$\sqrt{3}$,b=$\sqrt{3}$,即可求得椭圆C的标准方程;
(2)由$\overrightarrow{AB}$=(-a,b),$\overrightarrow{B′{F}_{2}}$=(c,b),AB⊥B′F2,可知:$\overrightarrow{AB}$•$\overrightarrow{B′{F}_{2}}$=0,即可求得b2=ac,因此c2+ac-a2=0,即e2+e-1=0,根据离心率的取值范围,即可求得椭圆C的离心率.
解答 解:(1)由椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),焦点在x轴上,
由椭圆的定义可知:丨PF1丨+丨PF2丨=2a,丨QF1丨+丨QF2丨=2a,
由△PQF1的周长为8,
∴丨PF1丨+丨PF2丨+丨QF1丨+丨QF2丨=4a=8,
∴a=2,
由2b=2$\sqrt{3}$,即b=$\sqrt{3}$,
∴椭圆的标准方程为:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(2)由A(a,0),B(0,b),B′(0,-b),F2(c,0),
∴$\overrightarrow{AB}$=(-a,b),$\overrightarrow{B′{F}_{2}}$=(c,b),
由AB⊥B′F2,
∴$\overrightarrow{AB}$•$\overrightarrow{B′{F}_{2}}$=0,即-ac+b2=0,
∴b2=ac,
由a2=b2+c2,
∴c2+ac-a2=0,等式两边同除以a2,
由e=$\frac{c}{a}$,0<e<1,
∴e2+e-1=0,解得:e=$\frac{-1±\sqrt{5}}{2}$,
∴e=$\frac{\sqrt{5}-1}{2}$,
∴椭圆C的离心率$\frac{\sqrt{5}-1}{2}$.![]()
点评 本题考查椭圆的标准方程及椭圆的简单几何性质的应用,考查向量数量积的坐标运用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,5) | B. | (-5,-2)∪(2,5) | C. | (-2,0)∪(2,5) | D. | (-5,0)∪(2,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 虚数集和各个象限内的点的集合是一一对应的 | |
| B. | 实、虚部都是负数的虚数的集合与第二象限的点的集合是一一对应的 | |
| C. | 实部是负数的复数的集合与第二、三象限的点的集合是一一对应的 | |
| D. | 实轴上侧的点的集合与虚部为正数的复数的集合是一一对应的 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com