精英家教网 > 高中数学 > 题目详情
5.从射击、乒乓球、跳水、田径四个大项的雅典奥运冠军中选出6名作“夺冠之路”的励志报告.
(1)若每个大项中至少选派一人,则名额分配有几种情况?
(2)若将6名冠军分配到5个院校中的4个院校作报告,每个院校至少一名冠军,则有多少种不同的分配方法?

分析 (1)分类讨论,利用加法原理,即可得出结论;
(2)从5个院校中选4个,再从6个冠军中,先组合,再进行排列,即可得出结论.

解答 解:(1)名额分配只与人数有关,与不同的人无关.
每大项中选派一人,则还剩余两个名额,当剩余两人出自同一大项时,名额分配情况有4种,当剩余两人出自不同大项时,名额分配情况有${C}_{4}^{2}$=6种.
∴有4+6=10种.  …(6分)
(2)从5个院校中选4个,再从6个冠军中,先组合,再进行排列,有$C_5^4•({C_6^3+\frac{C_6^2C_4^2}{A_2^2}})•A_4^4=7800$种分配方法. …(12分)

点评 本题考查加法原理,考查排列、组合知识的综合运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.某人练习射击,共有5发子弹,每次击中目标的概率为0.6,若他只需要在五次射击中四次击中目标就算合格,一旦合格即停止练习.则他在第五次射击结束时恰好合格的概率为(  )
A.0.64×0.4B.C${\;}_{5}^{4}$•0.64•(1-0.6)+C${\;}_{5}^{5}$•0.65
C.0.64D.C${\;}_{4}^{3}$×0.64×0.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(1+x)-x+$\frac{k}{2}$x2(k≥0).当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,则a1=819.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x1,x2分别是函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c的两个极值点,且x1∈(0,1)x2∈(1,2),则$\frac{b-2}{a-1}$的取值范围为(  )
A.(1,4)B.($\frac{1}{2}$,1)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.画出计算12+32+52+…+9992的程序框图,并编写相应的程序.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.方程$\frac{1}{x}$+$\frac{1}{y}$=$\frac{1}{2011}$的整数解的个数是5个.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在三角形ABC中,三个内角所对的边为a,b,c,如果A:B:C=1:2:3,那么a:b:c=(  )
A.1:2:3B.1:$\sqrt{3}$:2C.1:4:9D.1:$\sqrt{2}$:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,甲、乙两个企业的用电负荷量y关于投产持续时间t(单位:小时)的关系y=f(t)均近似地满足函数f(t)=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π).

(1)根据图象,求函数f(t)的解析式;
(2)为使任意时刻两企业用电负荷量之和不超过4.5,现采用错峰用电的方式,让企业乙比企业甲推迟m(m>0)小时投产,求m的最小值.

查看答案和解析>>

同步练习册答案