分析 利用已知等式以及平面向量的数量积得到关于|$\overrightarrow{b}$|的方程解之.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°,
所以|$\overrightarrow{a}$-2$\overrightarrow{b}$|2=21,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°,则${\overrightarrow{a}}^{2}+4{\overrightarrow{b}}^{2}-4|\overrightarrow{a}||\overrightarrow{b}|cos120°=21$,整理得$2|\overrightarrow{b}{|}^{2}+|\overrightarrow{b}|-10=0$,解得|$\overrightarrow{b}$|=2;
故答案为:2.
点评 本题考查了平面向量的模长以及数量积的运算;属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要 | B. | 必要非充分 | ||
| C. | 充分必要 | D. | 既非充分又非必要 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com