精英家教网 > 高中数学 > 题目详情

某城市有甲,乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,但不超过40小时.设在甲家租一张球台开展活动x小时的收费为f(x)元(15≤x≤40),在乙家租一张球台开展活动x小时的收费为g(x)元(15≤x≤40).

(1)求f(x)和g(x);

(2)问:小张选择哪家比较合算?为什么?


[解析] (1)f(x)=5x(15≤x≤40);

g(x)=

(2)由f(x)=g(x),得

x=18或x=10(舍).

当15≤x<18时,f(x)-g(x)=5x-90<0,

f(x)<g(x),应选甲家;

x=18时,f(x)=g(x),即可以选甲家也可以选乙家.

当18<x≤30时,f(x)-g(x)=5x-90>0,

f(x)>g(x),应选乙家.

当30<x≤40时,

f(x)-g(x)=5x-(2x+30)=3x-30>0,

f(x)>g(x),应选乙家.

综上所述:当15≤x<18时,选甲家;

x=18时,可以选甲家也可以选乙家;

当18<x≤40时,选乙家.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


利用计算机随机模拟方法计算图中阴影部分(如图所示).第一步:利用计算机产生两个0~1之间的均匀随机数,xy,其中-1<x<1,0<y<1;

第二步:拟(xy)为点的坐标.共做此试验N次.若落在阴影部分的点的个数为N1

则可以计算阴影部分的面积S.

例如,做了2 000次试验,即N=2 000,

模拟得到N1=1 396,

所以S=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


f(x)是(-∞,+∞)上的奇函数,f(x+3)=f(x),当0≤x≤1时,f(x)=x2,则f(8)=____________.

查看答案和解析>>

科目:高中数学 来源: 题型:


abk是实数,二次函数f(x)=x2axb满足:f(k-1)与f(k)异号,f(k+1)与f(k)异号.在以下关于f(x)的零点的说法中,正确的是(  )

A.该二次函数的零点都小于k

B.该二次函数的零点都大于k

C.该二次函数的两个零点之间差一定大于2

D.该二次函数的零点均在区间(k-1,k+1)内

查看答案和解析>>

科目:高中数学 来源: 题型:


已知yx(x-1)(x+1)的图象如图所示.令f(x)=x(x-1)(x+1)+0.01,则下列关于f(x)=0的解叙述正确的是________.

①有三个实根;

x>1时恰有一实根;

③当0<x<1时恰有一实根;

④当-1<x<0时恰有一实根;

⑤当x<-1时恰有一实根(有且仅有一实根).

查看答案和解析>>

科目:高中数学 来源: 题型:


函数f(x)=的定义域为(  )

A.(-3,0]                           B.(-3,1]

C.(-∞,-3)∪(-3,0]              D.(-∞,-3)∪(-3,1]

查看答案和解析>>

科目:高中数学 来源: 题型:


lg+lg的值是________.

查看答案和解析>>

科目:高中数学 来源: 题型:


用二分法求函数f(x)=x3+5的零点可以取的初始区间是(  )

A.[-2,1]                             B.[-1,0]

C.[0,1]                               D.[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:


已知函数f(x)=2cos2sinx.

(1)求函数f(x)的最小正周期和值域;

(2)若α为第二象限角,且f(α)=,求的值.

查看答案和解析>>

同步练习册答案