精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=(2-a)lnx+$\frac{1}{x}$+2ax(a∈R).
(Ⅰ)当a<0时,求f(x)的单调区间;
(Ⅱ)实数m为何值时,对任意的a∈(-3,-2)及x1,x2∈[1,3],恒有|f(x1)-f(x2)|<(m+ln3)a-2ln3成立.

分析 (Ⅰ)先求出函数的导数,通过讨论a的范围,从而求出函数的单调区间;
(Ⅱ)分别求出函数f(x)的最大值和最小值,从而得到|f(x1)-f(x2)|≤f(1)-f(3),根据(m+ln3)a-2ln3>$\frac{2}{3}$-4a+(a-2)ln3,求出m的范围即可.

解答 解:(Ⅰ)由题意得函数f(x)的定义域是(0,+∞),
f′(x)=$\frac{2-a}{x}$-$\frac{1}{{x}^{2}}$+2a=$\frac{2{ax}^{2}+(2-a)x-1}{{x}^{2}}$,
当a<-2时,-$\frac{1}{a}$<$\frac{1}{2}$,令f′(x)<0,得:0<x<-$\frac{1}{a}$或x>$\frac{1}{2}$,
令f′(x)>0,得-$\frac{1}{a}$<x<$\frac{1}{2}$,
当-2<a<0时,得-$\frac{1}{a}$>$\frac{1}{2}$,
令f′(x)<0,得0<x<$\frac{1}{2}$或x>-$\frac{1}{a}$,
令f′(x)>0,得$\frac{1}{2}$<x<-$\frac{1}{a}$,
当a=-2时,f′(x)=$\frac{{(2x-1)}^{2}}{{x}^{2}}$<0,
综上所述,当a<-2时,f(x)的递减区间为(0,-$\frac{1}{a}$)和($\frac{1}{2}$,+∞)单调区间为(-$\frac{1}{a}$,$\frac{1}{2}$),
当a=-2时,f(x)在(0,+∞)单调递减,
当-2<a<0时,f(x)的递减区间为(0,$\frac{1}{2}$)和(-$\frac{1}{a}$,+∞),递增区间为:($\frac{1}{2}$,-$\frac{1}{a}$).
(Ⅱ)由(Ⅰ)得,当x∈(-3,-2]时,f(x)在区间[1,3]上单调递减,
当x=1时,f(x)取得最大值,当x=3时,f(x)取得最小值,
|f(x1)-f(x2)|≤f(1)-f(3)=(1-2a)-[(2-a)ln3+$\frac{1}{3}$+6a]=$\frac{2}{3}$-4a+(a-2)ln3,
∵|f(x1)-f(x2)|<(m+ln3)a-2ln3恒成立,
∴(m+ln3)a-2ln3>$\frac{2}{3}$-4a+(a-2)ln3,整理得ma>$\frac{2}{3}$-4a,
∵a<0,∴m<$\frac{2}{3a}$-4恒成立,∵-3<a<-2,∴-$\frac{13}{3}$<$\frac{2}{3a}$-4<-$\frac{38}{9}$,
∴m≤-$\frac{13}{3}$.

点评 本题考察了函数的单调性,考察导数的应用,考察分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow a$,$\overrightarrow b$是平面内夹角为90°的两个单位向量,若向量$\overrightarrow c$满足$(\overrightarrow c-\overrightarrow a)•(\overrightarrow c-\overrightarrow b)=0$,则$|\overrightarrow c|$的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在锐角三角形ABC中,a,b,c分别为内角A,B,C的对边,若A=2B,a=6,b=4,则c=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=cos2x-$\frac{1}{2}$,则(  )
A.f(x)为偶函数且最小正周期为πB.f(x)为奇函数且最小正周期为π
C.f(x)为偶函数且最小正周期为2πD.f(x)为奇函数且最小正周期为2π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,∠A=90°,AB=1,BC=$\sqrt{5}$,点M,N满足$\overrightarrow{AM}=λ\overrightarrow{AB}$,$\overrightarrow{AN}=(1-λ)\overrightarrow{AC}$,λ∈R,若$\overrightarrow{BN}•\overrightarrow{CM}=-2$,则λ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知命题p:?x∈R,x-2>0,命题q:?x∈R,2x>x2,则下列说法中正确的是(  )
A.命题p∨q是假命题B.命题p∧q是真命题
C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设点P为双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)和圆C2:x2+y2=a2+b2的一个交点,F1,F2为双曲线C1的左、右焦点.若2∠PF1F2=∠PF2F1,则双曲线C1的离心率为(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$+1C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{1}{{ln|{e^x}-{e^{-x}}|}}$的部分图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{1-x}{ax}$+lnx
(Ⅰ)当a=1时,求函数f(x)的最小值;
(Ⅱ)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(Ⅲ)试比较($\frac{n+1}{n}$)n+1(n∈N*)与e(e为自然对数的底数)的大小.

查看答案和解析>>

同步练习册答案