精英家教网 > 高中数学 > 题目详情
6.在数列{an}中,a3=1,an=an+1+1,n∈N*,则a10=(  )
A.-6B.-5C.5D.6

分析 由an+1=an-1,利用递推思想能求出a10

解答 解:∵在数列{an}中,a3=1,an=an+1+1,n∈N*
∴an+1=an-1,
∴a4=1-1=0,a5=0-1=-1,a6=-1-1=-2,
a7=-2-1=-3,a8=-3-1=-4,a9=-4-1=-5,
a10=-5-1=-6.
故选:A.

点评 本题考查数列的第10项的求法,是基础题,解题时要认真审题,注意递推思想的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对任意实数x>-1,函数f(x)是2x,${log_{\frac{1}{2}}}(x+1)$和1-x中的最大者,则函数f(x)的最小值为(  )
A.在(0,1)内B.等于1C.在(1,2)内D.等于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数$f(x)=2cos(\frac{π}{3}-\frac{x}{2})$,
(1)求f(x)的周期;
(2)当x∈[-π,π]时,求f(x)单调递增区间;
(3)当x∈[0,2π]时,求f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设{an}是等差数列,{bn}是各项都为正数的等比数列,且a1=b1=1,a1+b2=3,a2+b3=7
(Ⅰ)求{an},{bn}的通项公式;        
(Ⅱ)求数列$\left\{{\frac{a_n}{b_n}}\right\}$的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知在△ABC中,角A、B、C所对应的边为a,b,c.
(I)若sin(A+$\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$cosA,求A的值;
(Ⅱ)若cosA=$\frac{1}{3}$,b=3c,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的离心率为$\frac{{2\sqrt{3}}}{3}$,若抛物线C:y2=2px(p>0)的焦点F到双曲线的渐近线的距离为1,
(1)求抛物线C的方程;
(2)过点F的直线l交抛物线C于A、B两点(点A在x轴下方),若$\overline{AF}=\frac{1}{3}\overline{FB}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若a+bi=$\frac{5}{1+2i}$(i是虚数单位,a,b∈R),则ab=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.下列正确命题有③④.
①“$sinθ=\frac{1}{2}$”是“θ=30°”的充分不必要条件
②如果命题“¬(p或q)”为假命题,则 p,q中至多有一个为真命题
③设a>0,b>1,若a+b=2,则$\frac{2}{a}$+$\frac{1}{b-1}$的最小值为3+2$\sqrt{2}$
④函数f(x)=3ax+1-2a在(-1,1)上存在x0,使f(x0)=0,则a的取值范围是$a<-1或a>\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.到直线4x+3y-5=0的距离为1的点的轨迹方程为4x+3y=0或4x+3y-10=0.

查看答案和解析>>

同步练习册答案