分析 (Ⅰ)当b=1且点D为椭圆的右顶点时,得到A,B,D的坐标,写出直线MD的方程,求得M坐标由S=S△ABD+S△ABM得答案;
(Ⅱ)设直线MD的方程为y=kx-b(k≠0),分别联立MD所在直线方程与椭圆方程和y=-2,求得M,D的坐标,由直线AM、AD的斜率之积为-$\frac{3}{4}$得到b值,则椭圆C的方程可求.
解答 解:(Ⅰ)当b=1且点D为椭圆的右顶点时,A(0,1),B(0,-1),D(2,0),
∴直线MD的方程为$y=\frac{1}{2}x-1$,可得M(-2,-2),﹍﹍﹍﹍﹍﹍﹍﹍﹍(3分)
∴S=S△ABD+S△ABM=$\frac{1}{2}×2×2+\frac{1}{2}×2×2=4$.﹍﹍﹍﹍﹍﹍﹍﹍﹍(6分)
(Ⅱ)A(0,b),B(0,-b),设直线MD的方程为y=kx-b(k≠0),则:
联立$\left\{\begin{array}{l}\frac{x^2}{4}+\frac{y^2}{b^2}=1\\ y=kx-b\end{array}\right.$,解得$D(\frac{8kb}{{4{k^2}+{b^2}}},\frac{{4{k^2}b-{b^3}}}{{4{k^2}+{b^2}}})$,﹍﹍﹍﹍﹍﹍﹍﹍﹍(10分)
联立$\left\{\begin{array}{l}y=-2\\ y=kx-b\end{array}\right.$,解得 $M(\frac{b-2}{k},-2)$,﹍﹍﹍﹍﹍﹍﹍﹍﹍(11分)
∴${k_{AM}}•{k_{AD}}=-\frac{{{b^2}(2+b)}}{4(2-b)}=-\frac{3}{4}$.
∴b3+2b2+3b-6=(b-1)(b2+3b+6)=0,解得b=1.
∴椭圆C的方程为$\frac{x^2}{4}+{y^2}=1$.﹍﹍﹍﹍﹍﹍﹍﹍﹍(13分)
点评 不同考查椭圆方程的求法,考查了椭圆的简单性质,考查直线与椭圆位置关系的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{10}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com