精英家教网 > 高中数学 > 题目详情
7.已知等差数列{an}满足:a4=9,a5+a7=26,数列{an}的前n项和为Sn
(1)求an及Sn
(2)设{bn-an}是首项为1,公比为2的等比数列,求数列{bn}的前n项和Tn

分析 (1)设等差数列{an}的公差为d,运用等差数列的通项公式列方程组,解方程组可得首项和公差,进而得到所求通项公式和求和公式;
(2)求得bn=an+2n-1,运用数列的求和方法:分组求和,结合等比数列的求和公式即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,
由a5+a7=26,a4=9,
可得2a1+10d=26,a1+3d=9,
解得a1=3,d=2,
所以an=3+2(n-1)=2n+1; Sn=3n+$\frac{n(n-1)}{2}$×2=n2+2n.
(2)由(1)知an=2n+1,
{bn-an}是首项为1,公比为2的等比数列,
可得bn-an=2n-1
即bn=an+2n-1
则前n项和Tn=Sn+(1+2+4+…+2n-1
=n2+2n+$\frac{1-{2}^{n}}{1-2}$=n2+2n+2n-1.

点评 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列的求和方法:分组求和,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若集合A={x|x=2k-1,k∈Z},B={x|x=4l±1,l∈Z},则(  )
A.A?BB.B?AC.A=BD.A∪B=Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.计算cos80°cos20°+sin80°sin20°的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)的定义域为R,对任意实数m、n,均有f(m+n)=f(m)+f(n)-1,且f($\frac{1}{2}$)=2,当x>-$\frac{1}{2}$时有f(x)>0
(1)求f(-$\frac{1}{2}$)的值;
(2)判断f(x)在R上的单调性,并加以证明;
(3)解关于x的不等式:1+f(x2+1)≤f(1)+f(2|x|)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.执行如图所示的程序框图,若输出i的值是9,则判断框中的横线上可以填入的最大整数是(  )
A.4B.8C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知使关于x的不等式$\frac{2lnx}{x}$+1≥$\frac{m}{x}$-$\frac{3}{x^2}$对任意的x∈(0,+∞)恒成立的实数m的取值集合为A,函数f(x)=$\sqrt{16-{x^2}}$的值域为B,则有(  )
A.B⊆∁RAB.A⊆∁RBC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若正数t满足a(2e-t)lnt=1(e为自然对数的底数),则实数a的取值范围为(-∞,0)$∪[\frac{1}{e},+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知直线l:x-y+1=0是圆(x+3)2+(y+a)2=25的一条对称轴(即圆关于直线对称)则a=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)为偶函数,且在(-∞,0)单调递增,则下列关系式中成立的是(  )
A.f(-$\frac{3}{2}$)<f(-1)<f(2)B.f(-1)<f($\frac{3}{2}$)<f(-1)<f(2)C.f(2)<f(-1)<f(-$\frac{3}{2}$)D.f(-2)<f($\frac{3}{2}$)<f(-1)

查看答案和解析>>

同步练习册答案