精英家教网 > 高中数学 > 题目详情
9.已知定义域为R的函数f(x),对任意的x∈R,均有f(x+1)=f(x-1),且x∈(-1,1]时,有f(x)=$\left\{{\begin{array}{l}{{x^2}+2,x∈[{0,1}]}\\{2-{x^2},x∈({-1,0})}\end{array}}$,则方程f(f(x))=3在区间[-3,3]上的所有实根之和为3.

分析 计算f(x)的周期,做出f(x)的函数图象,根据函数图象判断f(x)=3,从而得出x的值.

解答 解:∵f(x+1)=f(x-1),∴f(x+2)=f(x),∴f(x)是以2为周期的函数.
做出f(x)的函数图象如图所示:

∵f(f(x))=3,∴f(x)=1+2k,k∈Z.
∵1<f(x)≤3,
∴f(x)=3,
∵x∈[-3,3],
∴x=-1或x=1或x=3.
f(f(x))=3在[-3,3]内的所有跟之和为(-1)+1+3=3.
故答案为:3.

点评 本题考查了函数零点的判断,周期函数的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.(1)求函数y=2x-$\sqrt{x-1}$的值域;
(2)求函数y=$\frac{3x-1}{x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F1且与x轴垂直的直线交椭圆于A,B两点,直线AF2与椭圆的另一个交点为C,若$\overrightarrow{A{F}_{2}}$=2$\overrightarrow{{F}_{2}C}$,则椭圆的离心率为(  )
A.$\frac{\sqrt{5}}{5}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{10}}{5}$D.$\frac{3\sqrt{3}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的一元二次方程x2-2ax+a+2=0,当a为何值时,该方程:
(1)有两个不同的正根;
(2)有不同的两根且两根在(1,3)内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x3+ax2+bx+c,(a,b,c均为非零整数),且f(a)=a3,f(b)=b3,a≠b,则c=(  )
A.16B.8C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$a={(\frac{1}{2})^{0.7}}$,$b={(\frac{1}{2})^{0.8}}$,c=log30.7,则(  )
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.计算下列各式的值:(写出化简过程)
(1)${(2\frac{3}{5})^0}+{2^{-2}}×{(2\frac{1}{4})^{-\frac{1}{2}}}-{(0.01)^{0.5}}$;
(2)$ln(e\sqrt{e})+{log_2}6+{log_{\frac{1}{2}}}3+{log_2}3•{log_3}4$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知等差数列{an},Sn为其前n项和,若a1=9,a3+a5=0,则S6的值为(  )
A.6B.9C.15D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)=\left\{\begin{array}{l}1+{log_5}x,x≥1\\ 2x-1,x<1\end{array}\right.$若f[f(0)+m]=2,则m等于(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案