精英家教网 > 高中数学 > 题目详情
9.用辗转相除法求884与1071的最大公约数(写出过程)

分析 用辗转相除法求884与1071的最大公约数,写出1071=884×1+187,…34=17×2,得到两个数字的最大公约数.

解答 (本题满分8分)
解:1071=884×1+187,884=187×4+136,187=136×1+51,136=51×2+34
51=34×1+17,34=17×2,
∴884与1071的最大公约数为17.

点评 本题考查辗转相除法,这是算法案例中的一种题目,本题解题的关键是解题时需要有耐心,认真计算,不要在数字运算上出错,本题是一个基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.某校100名学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100],则图中a的值为0.005.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}$(t是参数),⊙C的极坐标方程为ρ=2$\sqrt{2}cos(θ+\frac{π}{4})$.
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)试判断直线l与⊙C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=sinx-$\sqrt{3}$cosx的最小值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米至11米(含7米和11米,假定该校高一女生掷铅球均不超过11米)为优秀.把获得的所有数据,分成[1,3),[3,5),[5,7),[7,9),[9,11]五组,画出的频率分布直方图如图所示.已知有4名学生的成绩在9米到11米之间.
(1)求实数a的值;
(2)参加“掷铅球”项目测试的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.总体编号为001,002,003,…,299,300的300个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3、4、5列数字开始由左到右依次选取三个数字,则选出来的第5个个体的编号为(  )
A.080B.263C.140D.280

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设i为虚数单位,则1+i+i2+i3+…+i10=i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在[-1.1]上的函数f(x)=-2|x|+1,设f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*,若关于x的方程f3(x)-mx+m=0有5个实数根,则实数m的取值范围是$({\frac{2}{3},1})∪\left\{{-\frac{4}{5}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的取值范围.

查看答案和解析>>

同步练习册答案