分析 (Ⅰ)化简基本方程为普通方程,然后求解圆心C的直角坐标;
(Ⅱ)求出直线的参数方程,利用圆心到直线的距离,判断直线l与⊙C的位置关系.
解答 (本小题满分10分)
解:(I)由⊙C的极坐标方程为$ρ=2\sqrt{2}cos(θ+\frac{π}{4})$,
展开化为${ρ^2}=2\sqrt{2}ρcos(θ+\frac{π}{4})=2ρ(cosθ-sinθ)$,
即x2+y2=2x-2y,
化为(x-1)2+(y+1)2=2
∴圆心C(1,-1).…(5分)
(II)由直线l的参数方程$\left\{\begin{array}{l}x=\frac{\sqrt{2}}{2}t\\ y=\frac{\sqrt{2}}{2}t+4\sqrt{2}\end{array}\right.$(t是参数),消去参数t可得x-y-4$\sqrt{2}$=0,
∴圆心C到直线的距离$d=\frac{{|{2-4\sqrt{2}}|}}{{\sqrt{2}}}=4-\sqrt{2}>\sqrt{2}$,
因此直线l与圆相离.….(10分)
点评 本题考查参数方程以及极坐标方程的应用,点到直线的距离的距离公式的应用,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{9}$ | B. | $-\frac{8}{3}$ | C. | 4 | D. | -4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com