精英家教网 > 高中数学 > 题目详情
10.在边长为1的正方体内部有一个与正方体各面均相切的球,一动点在正方体内运动,则此点落在球的内部的概率为$\frac{π}{6}$.

分析 由题意,本题是几何概型概率求法,而选用的集合测度为体积,利用公式解答即可.

解答 解:由题意,正方体的体积为1,其内切球的体积为$\frac{4}{3}π(\frac{1}{2})^{3}=\frac{π}{6}$,以偶几何概型的公式可得此点落在球的内部的概率为:$\frac{\frac{π}{6}}{1}=\frac{π}{6}$;
故答案为:$\frac{π}{6}$.

点评 本题考查了几何概型概率的求法;关键是明确事件集合的长度;本题的测度是体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知直线l的参数方程是$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t+4\sqrt{2}\end{array}$(t是参数),⊙C的极坐标方程为ρ=2$\sqrt{2}cos(θ+\frac{π}{4})$.
(Ⅰ)求圆心C的直角坐标;
(Ⅱ)试判断直线l与⊙C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设i为虚数单位,则1+i+i2+i3+…+i10=i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知定义在[-1.1]上的函数f(x)=-2|x|+1,设f1(x)=f(x),fn+1(x)=f[fn(x)],n∈N*,若关于x的方程f3(x)-mx+m=0有5个实数根,则实数m的取值范围是$({\frac{2}{3},1})∪\left\{{-\frac{4}{5}}\right\}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数h(x)=$\frac{1}{2}a{x^2}$+2ax(a∈R),g(x)=lnx.
(1)若f(x)=h(x)-3g(x)在x=1处有极值,求a;
(2)若f(x)在[2,3]上为增函数,求a的取值范围;
(3)证明:?x∈(0,+∞),$\frac{x-1}{x}$≤g(x)≤x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,若∠B=2∠A,且a:b=1:$\sqrt{3}$,则cos2B的值是(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.关于函数$f(x)={sin^2}x-{(\frac{2}{3})^{|x|}}+\frac{1}{2}$,有下面四个结论:
①f(x)是偶函数;      
②无论x取何值时,f(x)<$\frac{1}{2}$恒成立;
③f(x)的最大值是$\frac{3}{2}$;  
④f(x)的最小值是-$\frac{1}{2}$.
其中正确的结论是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}$)(ω>0)的最小正周期为π.
(1)求ω的值;
(2)求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在等比数列{an}中,若a3,a7是方程3x2-11x+9=0的两根,则a5的值为$\sqrt{3}$.

查看答案和解析>>

同步练习册答案