精英家教网 > 高中数学 > 题目详情
已知△ABC的角A、B、C所对的边分别是a,b,c,设向量
m
=(a,b),
n
=(sinB,sinA),
p
=(b-2,a-2),
m
p

(1)若边长c=2,角C=
π
3
,求△ABC的面积;
(2)若
m
n
,求边a,b的值.
考点:正弦定理,平面向量共线(平行)的坐标表示
专题:解三角形
分析:(1)由
m
p
可得ab的式子,结合余弦定理可得ab得方程,解方程代入面积公式可得;
(2)由
m
n
和正弦定理可得a=b,联合ab=a+b可解得a,b的值.
解答: 解:(1)∵
m
=(a,b),
p
=(b-2,a-2),且
m
p

∴a(b-2)+b(a-2)=0,即a+b=ab,
由余弦定理可得22=a2+b2-2abcos
π
3

代入数据化简可得4=(a+b)2-3ab,
即(ab)2-3ab-4=0,解得ab=4,或ab=-1(舍去),
∴△ABC的面积S=
1
2
absinC=
3

(2)∵
m
n
,∴asinA=bsinB,
由正弦定理可得a=b,即△ABC为等腰三角形,
结合ab=a+b可得a=b=2
点评:本题考查解三角形,设计正余弦定理和向量的平行与垂直,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F是双曲线
x2
a2
-
y2
b2
=1的焦点,过F作双曲线一条渐近线的垂线,与两条渐近线交于P,Q,若
FP
=3
FQ
,则双曲线的离心率为(  )
A、
6
2
B、
5
2
C、
3
D、
10
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:
(a,b),(a,
.
b
),(a,b),(
.
a
,b),(
.
a
.
b
),(a,b),(a,b),(a,
.
b
),
.
a
,b),(a,
.
b
),(
.
a
.
b
),(a,b),(a,
.
b
),(
.
a
,b)(a,b)
其中a,
.
a
分别表示甲组研发成功和失败,b,
.
b
分别表示乙组研发成功和失败.
(Ⅰ)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;
(Ⅱ)若该企业安排甲、乙两组各自研发一样的产品,试估计恰有一组研发成功的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设各项均为正数的数列{an}的前n项和为Sn满足Sn2-(n2+n-3)Sn-3(n2+n)=0,n∈N*
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有
1
a1(a1+1)
+
1
a2(a2+1)
+…+
1
an(an+1)
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为
2
3
,乙获胜的概率为
1
3
,各局比赛结果相互独立.
(Ⅰ)求甲在4局以内(含4局)赢得比赛的概率;
(Ⅱ)记X为比赛决胜出胜负时的总局数,求X的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

平面向量
a
=(1,2),
b
=(4,2),
c
=m
a
+
b
(m∈R),且
c
a
的夹角等于
c
b
的夹角,则m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos2x+2sinx的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知4a=2,lgx=a,则x=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将函数y=3sin(2x+
π
3
)的图象向右平移
π
2
个单位长度,所得图象对应的函数(  )
A、在区间[
π
12
12
]上单调递减
B、在区间[
π
12
12
]上单调递增
C、在区间[-
π
6
π
3
]上单调递减
D、在区间[-
π
6
π
3
]上单调递增

查看答案和解析>>

同步练习册答案