精英家教网 > 高中数学 > 题目详情
20.如题图,已知函数$f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})$的图象与y的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点之间的距离为2$\sqrt{4+{π^2}}$.
(Ⅰ)求f(x)的解析式;
(Ⅱ)在△ABC中,内角A、B、C所对的边长分别为a、b、c,若f(2B+$\frac{2π}{3}$)=$\frac{2}{3}$,b=$\sqrt{3}$,求$\overrightarrow{BA}•\overrightarrow{BC}$的最大值.

分析 (Ⅰ)根据三角函数图象确定A,ω和φ的值即可求f(x)的解析式;
(Ⅱ)求出sinB和cosB的值,结合向量数量积以及余弦定理进行求解即可.

解答 解:(Ⅰ)由图象可知A=2,${4}^{2}+(\frac{T}{2})^{2}$=(2$\sqrt{4+{π^2}}$)2
即T=4π=$\frac{2π}{ω}$,
解得ω=$\frac{1}{2}$,
即f(x)=2sin($\frac{1}{2}x$+φ),
∵f(0)=1,∴2sinφ=1,
即sinφ=$\frac{1}{2}$,
∵|φ|$<\frac{π}{2}$,∴φ=$\frac{π}{6}$,
即f(x)=2sin($\frac{1}{2}x$+$\frac{π}{6}$),即f(x)的解析式为f(x)=2sin($\frac{1}{2}x$+$\frac{π}{6}$);
(Ⅱ)由于f(2B+$\frac{2π}{3}$)=$\frac{2}{3}$,即cosB=$\frac{1}{3}$,sinB=$\frac{2\sqrt{2}}{3}$.
又cosB=$\frac{1}{3}=\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$=$\frac{{a}^{2}+{c}^{2}-3}{2ac}≥\frac{2ac-3}{2ac}$,
即4ac≤9,ac≤$\frac{9}{4}$,当且仅当a=c取得号,
则$\overrightarrow{BA}•\overrightarrow{BC}$=accosB≤$\frac{9}{4}$×$\frac{1}{3}$=$\frac{3}{4}$,
即$\overrightarrow{BA}•\overrightarrow{BC}$的最大值为$\frac{9}{4}$.

点评 本题主要考查三角函数解析式的求解以及向量数量积的计算,利用余弦定理进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}满足:a1+a2+a3+…+an=n-an,n∈N*
(Ⅰ)求证:数列{an-1}是等比数列;
(Ⅱ)令bn=(2-n)(an-1)(n∈N*),若对于?n∈N*,都有bn≤$\frac{1}{4}$sinx,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
年产量/亩年种植成本/亩每吨售价
黄瓜4吨1.2万元0.55万元
韭菜6吨0.9万元0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为30;20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.空间直角坐标系中,已知原点为O,A(1,0,0),B(0,1,0),C(0,0,1),在三棱锥O-ABC中任取一点P(x,y,z),则满足$\sqrt{{x^2}+{y^2}+{z^2}}≤\frac{1}{2}$的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{8}$D.$\frac{π}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知一空间几何体的三视图如题图所示,其中正视图与左视图都是全等的等腰梯形,则该几何体的体积为(  )
A.17B.$\frac{52}{3}$C.$\frac{55}{3}$D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.△ABC中,内角A,B,C的对边分别为a,b,c,且cos2A=3cos(B+C)+1.
(Ⅰ)求角A的大小;
(Ⅱ)若cosBcosC=-$\frac{1}{8}$,且△ABC的面积为2$\sqrt{3}$,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设变量x、y满足线性约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$则目标函数z=log2(2x+y)的最大值为(  )
A.log2$\frac{3}{2}$B.log23C.1D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知O是坐标原点,点A(-1,1),若点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}\right.$上的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是[0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知Sn为数列{an}的前n项和,2an-n=Sn,求数列{an}的通项公式2n-1.

查看答案和解析>>

同步练习册答案