19£®Ä³µØÇøÄ⽨Á¢Ò»¸öÒÕÊõ²«Îï¹Ý£¬²ÉÈ¡¾º±êµÄ·½Ê½´Ó¶à¼Ò½¨Öþ¹«Ë¾Ñ¡È¡Ò»¼Ò½¨Öþ¹«Ë¾£¬¾­¹ý²ã²ãɸѡ£¬¼×¡¢ÒÒÁ½¼Ò½¨Öþ¹«Ë¾½øÈë×îºóµÄÕб꣮ÏÖ´Ó½¨ÖþÉè¼ÆÔºÆ¸Çëר¼ÒÉè¼ÆÁËÒ»¸öÕб귽°¸£ºÁ½¼Ò¹«Ë¾´Ó6¸öÕбê×ÜÊÇÖÐËæ»ú³éÈ¡3¸ö×ÜÌ⣬ÒÑÖªÕâ6¸öÕбêÎÊÌâÖУ¬¼×¹«Ë¾¿ÉÕýÈ·»Ø´ðÆäÖÐ4µÀÌâÄ¿£¬¶øÒÒ¹«Ë¾ÄÜÕýÃæ»Ø´ðÿµÀÌâÄ¿µÄ¸ÅÂʾùΪ$\frac{2}{3}$£¬¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¶ÔÿÌâµÄ»Ø´ð¶¼ÊÇÏà¶ÀÁ¢£¬»¥²»Ó°ÏìµÄ£®
£¨1£©Çó¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¹²´ð¶Ô2µÀÌâÄ¿µÄ¸ÅÂÊ£»
£¨2£©Çë´ÓÆÚÍûºÍ·½²îµÄ½Ç¶È·ÖÎö£¬¼×¡¢ÒÒÁ½¼ÒÄļҹ«Ë¾¾º±ê³É¹¦µÄ¿ÉÄÜÐÔ¸ü´ó£¿

·ÖÎö £¨1£©ÀûÓöÀÁ¢Öظ´ÊÔÑéµÄ¸ÅÂʹ«Ê½Çó½â¼×¡¢ÒÒÁ½¼Ò¹«Ë¾¹²´ð¶Ô2µÀÌâÄ¿µÄ¸ÅÂÊ£®
£¨2£©Éè¼×¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâÊýΪX£¬ÔòXµÄȡֵ·Ö±ðΪ1£¬2£¬3£®Çó³ö¸ÅÂÊ£¬µÃµ½XµÄ·Ö²¼ÁÐÇó½âÆÚÍû£»ÒÒ¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâΪY£¬ÔòYȡֵ·Ö±ðΪ0£¬1£¬2£¬3£®Çó³ö¸ÅÂʵõ½·Ö²¼ÁУ¬Çó³öÆÚÍû¼´¿É£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉÖª£¬ËùÇó¸ÅÂÊ$P=\frac{C_4^1C_2^2}{C_6^3}¡ÁC_3^1{£¨{\frac{2}{3}}£©^1}{£¨{1-\frac{2}{3}}£©^2}+\frac{C_4^2C_2^1}{C_6^3}¡Á{£¨{1-\frac{2}{2}}£©^3}=\frac{1}{15}$£®
£¨2£©Éè¼×¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâÊýΪX£¬ÔòXµÄȡֵ·Ö±ðΪ1£¬2£¬3.$P£¨{X=1}£©=\frac{C_4^1C_2^2}{C_6^3}=\frac{1}{5}$£¬$P£¨X=2£©=\frac{C_4^2C_2^1}{C_6^3}=\frac{3}{5}$£¬$P£¨{X=3}£©=\frac{C_4^3C_2^0}{C_6^3}=\frac{1}{5}$£®
ÔòXµÄ·Ö²¼ÁÐΪ£º

X123
P$\frac{1}{5}$$\frac{3}{5}$$\frac{1}{5}$
¡à$E£¨X£©=1¡Á\frac{1}{5}+2¡Á\frac{3}{5}+3¡Á\frac{1}{5}=2$$D£¨X£©={£¨{1-2}£©^2}¡Á\frac{1}{5}+{£¨{2-2}£©^2}¡Á\frac{3}{5}+{£¨{3-2}£©^2}¡Á\frac{1}{5}=\frac{2}{5}$£®
ÉèÒÒ¹«Ë¾ÕýÈ·Íê³ÉÃæÊÔµÄÌâΪY£¬ÔòYȡֵ·Ö±ðΪ0£¬1£¬2£¬3.$P£¨{Y=0}£©=\frac{1}{27}$£¬$P£¨{Y=1}£©=C_3^1¡Á\frac{2}{3}¡Á{£¨{\frac{1}{3}}£©^2}=\frac{2}{9}$£¬$P£¨{Y=2}£©=C_3^2¡Á{£¨{\frac{2}{3}}£©^2}¡Á\frac{1}{3}=\frac{4}{9}$£¬$P£¨{Y=3}£©={£¨{\frac{2}{3}}£©^3}=\frac{8}{27}$
ÔòYµÄ·Ö²¼ÁÐΪ£º
Y0123
P$\frac{1}{27}$$\frac{2}{9}$$\frac{4}{9}$$\frac{8}{27}$
¡à$E£¨Y£©=0¡Á\frac{1}{27}+1¡Á\frac{2}{9}+2¡Á\frac{4}{9}+3¡Á\frac{8}{27}=2$£®£¨»ò¡ß$Y\¡«B£¨{3£¬\frac{2}{3}}£©$£¬¡à$E£¨Y£©=3¡Á\frac{2}{3}=2$£©$D£¨Y£©={£¨{0-2}£©^2}¡Á\frac{1}{27}+{£¨{1-2}£©^2}¡Á\frac{2}{9}+{£¨{2-2}£©^2}¡Á\frac{4}{9}+{£¨{3-2}£©^2}¡Á\frac{8}{27}=\frac{2}{3}$£®£¨$D£¨Y£©=3¡Á\frac{2}{3}¡Á\frac{1}{3}=\frac{2}{3}$£©
ÓÉE£¨X£©=D£¨Y£©£¬D£¨X£©£¼D£¨Y£©¿ÉµÃ£¬¼×¹«Ë¾¾º±ê³É¹¦µÄ¿ÉÄÜÐÔ¸ü´ó£®

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢Öظ´ÊÔÑé¸ÅÂÊÒÔ¼°·Ö²¼ÁÐÆÚÍûµÄÇ󷨣¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}£¬{bn}ÖУ¬a1=2£¬b1=1£¬µ±n¡Ý2ʱ£¬an-an-1=1£¬$\frac{{b}_{n}}{{b}_{n-1}}$=2£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Èôcn=$\frac{1}{{a}_{n}{a}_{n+1}}$+£¨-n£©•bn£¬Çó{cn}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«Öᣬ½¨Á¢¼«×ø±êϵ£¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\sqrt{6}$£®
£¨1£©Ð´³öÖ±ÏßlµÄÆÕͨ·½³ÌºÍÇúÏßC1µÄ²ÎÊý·½³Ì£»
£¨2£©Èô½«ÇúÏßC1Éϸ÷µãµÄºá×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{{\sqrt{6}}}{6}$±¶£¬×Ý×ø±êËõ¶ÌΪԭÀ´µÄ$\frac{{\sqrt{2}}}{2}$±¶£¬µÃµ½ÇúÏßC2£¬ÉèµãPÊÇÇúÏßC2ÉÏÈÎÒâÒ»µã£¬ÇóµãPµ½Ö±Ïßl¾àÀëµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

7£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬Èôº¯Êýf£¨x£©=sinx+$\sqrt{3}$cosx£¨x¡ÊR£©µÄ×î´óֵΪa1£¬ÇÒÂú×ãan-anSn+1=$\frac{{a}_{1}}{2}$-anSn£¬ÔòÊýÁÐ{an}µÄǰ2017ÏîÖ®»ýA2017=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÔ²MÓëÖ±Ïß3x-4y=0¼°3x-4y+10=0¶¼ÏàÇУ¬Ô²ÐÄÔÚÖ±Ïßy=-x-4ÉÏ£¬ÔòÔ²MµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®£¨x+3£©2+£¨y-1£©2=1B£®£¨x-3£©2+£¨y+1£©2=1C£®£¨x+3£©2+£¨y+1£©2=1D£®£¨x-3£©2+£¨y-1£©2=1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$µÄÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¹ýµã$£¨{1£¬-\frac{{\sqrt{2}}}{2}}£©$£¬µãF1£¬F2·Ö±ðΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF1µÄÖ±ÏßlÓëC½»ÓÚA£¬BÁ½µã£¬ÇÒ${S_{¡÷AB{F_2}}}=\frac{{4\sqrt{3}}}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÇóÖ¤£ºÒÔABΪֱ¾¶µÄÔ²¹ý×ø±êÔ­µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑ֪˫ÇúÏߦ££º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏßΪl£¬Ô²C£º£¨x-a£©2+y2=8Óël½»ÓÚA£¬BÁ½µã£¬Èô¡÷ABCÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬ÇÒ$\overrightarrow{OB}=5\overrightarrow{OA}$£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬ÔòË«ÇúÏߦ£µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{13}}}{3}$B£®$\frac{{2\sqrt{13}}}{3}$C£®$\frac{{\sqrt{13}}}{5}$D£®$\frac{{2\sqrt{13}}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Ä³ÖÖ²úÆ·µÄÖÊÁ¿ÒÔÆäÖÊÁ¿Ö¸±êºâÁ¿£¬²¢ÒÀ¾ÝÖÊÁ¿Ö¸±êÖµ»®·ÖµÈ¼¶Èç±í£º
ÖÊÁ¿Ö¸±êÖµmm£¼185185¡Üm£¼205M¡Ý205
µÈ¼¶ÈýµÈÆ·¶þµÈÆ·Ò»µÈÆ·
´ÓijÆóÒµÉú²úµÄÕâÖÖ²úÆ·ÖгéÈ¡200¼þ£¬¼ì²âºóµÃµ½ÈçÏÂµÄÆµÂÊ·Ö²¼Ö±·½Í¼£º
£¨1£©¸ù¾ÝÒÔÉϳéÑùµ÷²éµÄÊý¾Ý£¬ÄÜ·ñÈÏΪ¸ÃÆóÒµÉú²úÕâÖÖ²úÆ··ûºÏ¡°Ò»¡¢¶þµÈÆ·ÖÁÉÙÒªÕ¼µ½È«²¿²úÆ·µÄ92%µÄ¹æ¶¨¡±£¿
£¨2£©ÔÚÑù±¾ÖУ¬°´²úÆ·µÈ¼¶Ó÷ֲã³éÑùµÄ·½·¨³éÈ¡8¼þ£¬ÔÙ´ÓÕâ8¼þ²úÆ·ÖÐËæ»ú³éÈ¡4¼þ£¬Çó³éÈ¡µÄ4¼þ²úÆ·ÖУ¬Ò»¡¢¶þ¡¢ÈýµÈÆ·¶¼ÓеĸÅÂÊ£»
£¨3£©¸ÃÆóҵΪÌá¸ß²úÆ·µÄÖÊÁ¿£¬¿ªÕ¹ÁË¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯£¬»î¶¯ºóÔÙ³éÑù¼ì²â£¬²úÆ·ÖÊÁ¿Ö¸±êÖµX½üËÆÂú×ãX¡«N£¨218£¬140£©£¬Ôò¡°ÖÊÁ¿ÌáÉýÔ¡±»î¶¯ºóµÄÖÊÁ¿Ö¸±êÖµµÄ¾ùÖµ±È»î¶¯Ç°´óÔ¼ÌáÉýÁ˶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÊýÁÐ{an}Âú×ãµÝÍÆ¹ØÏµ£ºan+1=$\frac{{a}_{n}}{{a}_{n}+1}$£¬a1=$\frac{1}{2}$£¬Ôòa2017=£¨¡¡¡¡£©
A£®$\frac{1}{2016}$B£®$\frac{1}{2017}$C£®$\frac{1}{2018}$D£®$\frac{1}{2019}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸