精英家教网 > 高中数学 > 题目详情
14.已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为(  )
A.(x+3)2+(y-1)2=1B.(x-3)2+(y+1)2=1C.(x+3)2+(y+1)2=1D.(x-3)2+(y-1)2=1

分析 求出圆心坐标与半径,即可得出结论.

解答 解:到两直线3x-4y+10=0的距离都相等的直线方程为3x-4y+5=0,联立方程组$\left\{{\begin{array}{l}{3x-4y+5=0}\\{y=-x-4}\end{array}}\right.$,解得$\left\{{\begin{array}{l}{x=-3}\\{y=-1}\end{array}}\right.$.又两平行线之间的距离为2,所以,半径为1,从而圆M的方程为(x+3)2+(y+1)2=1.
故选C.

点评 本题考查圆的方程,考查学生的计算能力,确定圆心坐标与半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若函数f(x)=ex(sinx+acosx)在($\frac{π}{4}$,$\frac{π}{2}$)上单调递增,则实数a的取值范围是(  )
A.(-∞,1]B.(-∞,1)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的等腰直角三角形,俯视图是圆心角为$\frac{π}{2}$的扇形,则该几何体的表面积为(  )
A.2B.π+4C.$\sqrt{2}π+4$D.$({\sqrt{2}+1})π+4$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在区间[0,1]上随机取两个数,则这两个数之和小于$\frac{3}{2}$的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD
(1)在图中画出过点B,D的平面α,使得α∥平面AEF(必须说明画法,不需证明);
(2)若二面角α-BD-C是45°,求FB与平面α所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为$\frac{2}{3}$,甲、乙两家公司对每题的回答都是相独立,互不影响的.
(1)求甲、乙两家公司共答对2道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}x=1+2cosα\\ y=2sinα\end{array}\right.(α$为参数),以坐标原点O为极点,以x轴非负半轴为极轴建立极坐标系,直线l的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$.
(1)求曲线C的极坐标方程及直线l的直角坐标方程;
(2)设直线l与曲线C交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,-2≤x≤0}\\{f(x-1)+1,0<x≤2}\end{array}\right.$,则方程5[x-f(x)]=1在[-2,2]上的根的个数为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正三棱柱ABC-A1B1C1的顶点A1,B1,C1在同一球面上,且平面ABC经过球心,若此球的表面积为4π,则该三棱柱的侧面积的最大值为(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.$\frac{3\sqrt{3}}{2}$D.3$\sqrt{3}$

查看答案和解析>>

同步练习册答案