精英家教网 > 高中数学 > 题目详情
2.在区间[0,1]上随机取两个数,则这两个数之和小于$\frac{3}{2}$的概率是(  )
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{7}{8}$

分析 设取出的两个数为x、y,则可得“0≤x≤1,0≤y≤1”表示的区域为纵横坐标都在[0,1]之间的正方形区域,易得其面积为1,而x+y<1.5表示的区域为直线x+y=1.5下方,且在0≤x≤1,0≤y≤1所表示区域内部的部分,分别计算其面积,由几何概型的计算公式可得答案.

解答 解:设取出的两个数为x、y,
则有0≤x≤1,0≤y≤1,其表示的区域为纵横坐标都在[0,1]之间的正方形区域,易得其面积为1,
而x+y<1.5表示的区域为直线x+y=1.5下方,且在0≤x≤1,0≤y≤1表示区域内部的部分,
易得其面积为1-$\frac{1}{8}$=$\frac{7}{8}$,
则两数之和小于1.5的概率是$\frac{7}{8}$.
故选:D.

点评 本题考查几何概型的计算,解题的关键在于用平面区域表示出题干的代数关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知全集U=R,集合A={x|x<2},B={x|x<0},那么A∩∁UB=(  )
A.{x|0≤x<2}B.{x|0<x<2}C.{x|x<0}D.{x|x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.《九章算术》是我国古代的数学巨著,内容极为丰富,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”,则其中分得钱数最多的是(  )
A.$\frac{5}{6}$钱B.1钱C.$\frac{7}{6}$钱D.$\frac{4}{3}$钱

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-2+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为$ρ=\sqrt{6}$.
(1)写出直线l的普通方程和曲线C1的参数方程;
(2)若将曲线C1上各点的横坐标缩短为原来的$\frac{{\sqrt{6}}}{6}$倍,纵坐标缩短为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,设点P是曲线C2上任意一点,求点P到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数h(x)的图象与函数g(x)=ex的图象关于直线y=x对称,点A在函数f(x)=ax-x2($\frac{1}{e}≤x≤e$,e为自然对数的底数)上,A关于x轴对称的点A'在函数h(x)的图象上,则实数a的取值范围是(  )
A.$[{1,e+\frac{1}{e}}]$B.$[{1,e-\frac{1}{e}}]$C.$[{e-\frac{1}{e},e+\frac{1}{e}}]$D.$[{e-\frac{1}{e},e}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,若函数f(x)=sinx+$\sqrt{3}$cosx(x∈R)的最大值为a1,且满足an-anSn+1=$\frac{{a}_{1}}{2}$-anSn,则数列{an}的前2017项之积A2017=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为(  )
A.(x+3)2+(y-1)2=1B.(x-3)2+(y+1)2=1C.(x+3)2+(y+1)2=1D.(x-3)2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐近线为l,圆C:(x-a)2+y2=8与l交于A,B两点,若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O为坐标原点),则双曲线Γ的离心率为(  )
A.$\frac{{\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{3}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{2\sqrt{13}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.四边形ABCD中,AD∥BC,AB=2,AD=1,A=$\frac{2π}{3}$.
(1)求sin∠ADB;
(2)若sin∠BDC=$\frac{2π}{3}$,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案