| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{7}{8}$ |
分析 设取出的两个数为x、y,则可得“0≤x≤1,0≤y≤1”表示的区域为纵横坐标都在[0,1]之间的正方形区域,易得其面积为1,而x+y<1.5表示的区域为直线x+y=1.5下方,且在0≤x≤1,0≤y≤1所表示区域内部的部分,分别计算其面积,由几何概型的计算公式可得答案.
解答
解:设取出的两个数为x、y,
则有0≤x≤1,0≤y≤1,其表示的区域为纵横坐标都在[0,1]之间的正方形区域,易得其面积为1,
而x+y<1.5表示的区域为直线x+y=1.5下方,且在0≤x≤1,0≤y≤1表示区域内部的部分,
易得其面积为1-$\frac{1}{8}$=$\frac{7}{8}$,
则两数之和小于1.5的概率是$\frac{7}{8}$.
故选:D.
点评 本题考查几何概型的计算,解题的关键在于用平面区域表示出题干的代数关系.
科目:高中数学 来源: 题型:选择题
| A. | {x|0≤x<2} | B. | {x|0<x<2} | C. | {x|x<0} | D. | {x|x<2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$钱 | B. | 1钱 | C. | $\frac{7}{6}$钱 | D. | $\frac{4}{3}$钱 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{1,e+\frac{1}{e}}]$ | B. | $[{1,e-\frac{1}{e}}]$ | C. | $[{e-\frac{1}{e},e+\frac{1}{e}}]$ | D. | $[{e-\frac{1}{e},e}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x+3)2+(y-1)2=1 | B. | (x-3)2+(y+1)2=1 | C. | (x+3)2+(y+1)2=1 | D. | (x-3)2+(y-1)2=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{13}}}{3}$ | B. | $\frac{{2\sqrt{13}}}{3}$ | C. | $\frac{{\sqrt{13}}}{5}$ | D. | $\frac{{2\sqrt{13}}}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com