精英家教网 > 高中数学 > 题目详情
1.若直线l:y=k(x+1)与圆C:(x-1)2+y2=1恒有公共点,则k的取值范围是$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,,直线l的倾斜角的取值范围是$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$.

分析 由题意,圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$≤1,由此可得实数k的范围及直线l的倾斜角的取值范围.

解答 解:由题意,圆心到直线的距离d=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$≤1,
∴$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,
∵0≤θ<π,
∴$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$.
故答案为$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知点A(2,0)B(0,-4)
(1)写出△AOB的外接圆方程
(2)设直线l:3x-4y-1=0与△AOB的外接圆交于A,B两点,求|AB|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$f(x)=lnx-ax+\frac{1-a}{x}-1(a∈R)$.
(1)当$0<a<\frac{1}{2}$时,求函数f(x)的单调区间;
(2)设g(x)=x2-2bx+4.当$a=\frac{1}{4}$时,若对任意$x∈[\frac{1}{e},e]$,存在x2∈[1,2],使f(x1)=g(x2),求实数b取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的中心在原点,右顶点为A(2,0),其离心率与双曲线$\frac{y^2}{3}-{x^2}=1$的离心率互为倒数
(1)求椭圆的方程;
(2)已知M,N是椭圆C上的点,O为原点,直线OM与ON的斜率之积为$-\frac{1}{4}$,若动点P(x0,y0)满足$\overrightarrow{OP}=\overrightarrow{OM}+3\overrightarrow{ON}$,求证:${x_0}^2+4{y_0}^2$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,单摆的摆线离开平衡位置的位移S(厘米)和时间t(秒)的函数关系是S=$\frac{1}{2}$sin(2t+$\frac{π}{3}$),则摆球往复摆动一次所需要的时间是π秒.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在三棱锥P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,则PC与平面PAB所成余弦值是(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图所示,几何体为一个球挖去一个内接正方体得到的组合体,现用一个经过球心的平面截它,所得的截面图形不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD,且AB=PD=2,则这个四棱锥的内切球半径是2-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知⊙C:x2+(y-1)2=5,直线l:mx-y+1-m=0.
(1)求证:对任意实数m,直线与⊙C总有两个不同的公共点;
(2)求直线被⊙C截得的线段最短时直线的方程.

查看答案和解析>>

同步练习册答案