精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA,则平面ABE与平面BED的夹角的余弦值为
 
考点:用空间向量求平面间的夹角
专题:空间角
分析:以B为坐标原点,分别以BC、BA、BP所在直线为x、y、z轴,建立空间直角坐标系,分别求出平面BED的一个法向量和平面ABE的法向量,利用向量法能求出平面ABE与平面BED的夹角的余弦值.
解答: 解:以B为坐标原点,分别以BC、BA、BP所在直线为x、y、z轴,
建立空间直角坐标系,
则B(0,0,0),A(0,3,0),
P(0,0,3),D(3,3,0),E(0,2,1),
BE
=(0,2,1),
BD
=(3,3,0),
设平面BED的一个法向量为
n
=(x,y,z),
n
BE
=2y+z=0
n
BD
=3x+3y=0

取z=1,得
n
=(
1
2
,-
1
2
,1),
平面ABE的法向量为
m
=(1,0,0),
∴cos<
n
m
>=
1
2
6
2
×1
=
6
6

∴平面ABE与平面BED的夹角的余弦值为
6
6

故答案为:
6
6
点评:本题考查直线与平面垂直的判定定理、平面与平面垂直的性质定理、二面角的求解等基础知识和空间向量的立体几何中的应用,意在考查方程思想、等价转化思想等数学思想方法和考生的空间想象能力、逻辑推理能力和运算求解能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某果园中有60棵橘子树,平均每棵树结200斤橘子.由于市场行情较好,园主准备多种一些橘子树以提高产量,但是若多种树,就会影响果树之间的距离,每棵果树接受到的阳光就会减少,导致每棵果树的产量降低,经验表明:在现有情况下,每多种一棵果树,平均每棵果树都会少结2斤橘子.
(1)如果园主增加种植了10棵橘子树,则总产量增加了多少?
(2)求果园总产量y(斤)与增加种植的橘子树数目x(棵)之间的函数关系式.
(3)增加种植多少棵橘子树可以使得果园的总产量最大?最大总产量是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙两城,甲城位于一直线河岸,乙城离岸40km,乙城到河岸的垂足B与甲城相距50km,两城要在此河边合舍一个水厂取水,从水厂到甲城和乙城的水管费用分别为每千米500元和我700元,则水厂甲城的距离为
 
千米,才能使水管费用最省?

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=3x-x3+4在x∈[1,2]的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆x2+y2-6x-7=0与抛物线C:y2=2px(p>0)的准线相切
(Ⅰ)求抛物线C的方程
(Ⅱ)过抛物线C的焦点F的直线交抛物线于A,B两点,若|AB|=7,求线段AB的中点M到y轴的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂的一个车间有5台同一型号机器均在独立运行,一天中每台机器发生故障的概率为0.1,若每一天该车间获取利润y(万元)与“不发生故障”的机器台数n(n∈N,n≤5)之间满足关系式:y=
-6(n≤2)
3n-3(n≥3)

(Ⅰ)求某一天中有两台机器发生故障的概率;
(Ⅱ)求这个车间一天内可能获取利润的均值(.精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=ax(a>0且a≠1)在[1,2]上的最大值与最小值之和为6,记f(x)=
ax-1
ax+1

(1)求a的值;
(2)判断函数f(x)的奇偶性;
(3)求不等式f(x)>
15
17
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,PO=
3
,AB=4,∠BAD=
π
3
,M为棱BC上一点,且BM=1.
(1)求二面角B-AP-M的平面角的余弦值;
(2)在侧棱PD上确定一点N,使ON∥平面APM.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为D,若存在非零实数h使得对于任意x∈M(M⊆D),有x+h∈M,且f(x+h)≥f(x),则称f(x)为M上的h高调函数.现给出下列命题:
①函数f(x)=(
1
2
x为R上的1高调函数;
②函数f(x)=sin2x为R上的π高调函数;
③若函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞).
④函数f(x)=1g(|x-2|+1)上的2高调函数.
其中正确命题的序号是
 
(写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案