精英家教网 > 高中数学 > 题目详情

【题目】已知函数有两个极值点.

(1)求实数的取值范围;

(2)求证: ,其中为自然对数的底数.

【答案】(1) (2)见解析

【解析】试题分析:(1) 由 有两个极值点,即方程有两解,即的图象与直线有两个公共点,利用导数研究函数的单调性,结合函数图象即可求得实数的取值范围;(2) ∵,∴,故只需证明: 等价于,不妨设,并令 ,利用导数可证明,从而可得结果.

试题解析:(1)由

,则

时, ,当时,

上递增,在上递减,

时, 时,

由题, 有两个极值点,即方程有两解,

的图象与直线有两个公共点,

.

(2)∵,∴,故只需证明:

,作差得:

因此,

不妨设,并令

,∴上单调递减,

,即成立,于是原命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知为实常数,函数.

(1)求函数的最值;

(2)设.

(i)讨论函数的单调性;

(ⅱ) 若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M与直线相切,且与定圆C外切,

求动圆圆心M的轨迹方程.

求动圆圆心M的轨迹上的点到直线的最短距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于AB的任意一点,垂足为E,点FPB上一点,则下列判断中不正确的是( )﹒

A.平面PACB.C.D.平面平面PBC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),直线的参数程为为参数),设直线的交点为,当变化时点的轨迹为曲线.

(1)求出曲线的普通方程;

(2)以坐标原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,点为曲线的动点,求点到直线的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F且过点A (2,2),椭圆的离心率为,点B为抛物线C与椭圆D的一个公共点,且.

(Ⅰ)求椭圆D的方程;

(Ⅱ)过椭圆内一点P(0,t)的直线l的斜率为k,且与椭圆C交于M,N两点,设直线OM,ON(O为坐标原点)的斜率分别为k1,k2若对任意k,存在实数λ,使得k1+ k2=λk,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国第一高摩天轮南昌之星摩天轮高度为,其中心距地面,半径为,若某人从最低点处登上摩天轮,摩天轮匀速旋转,那么此人与地面的距离将随时间变化,后达到最高点,从登上摩天轮时开始计时.

1)求出人与地面距离与时间的函数解析式;

2)从登上摩天轮到旋转一周过程中,有多长时间人与地面距离大于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 天气预报说明天下雨的概率为,则明天一定会下雨

B. 不可能事件不是确定事件

C. 统计中用相关系数来衡量两个变量的线性关系的强弱,若则两个变量正相关很强

D. 某种彩票的中奖率是,则买1000张这种彩票一定能中奖

查看答案和解析>>

同步练习册答案