精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn=n2+
1
2
n
,求数列{an}的首项a1和通项公式.
考点:等差数列的性质
专题:等差数列与等比数列
分析:Sn=n2+
1
2
n
,利用公式an=
S1,n=1
Sn-Sn-1,n≥2
,能求出数列{an}的首项a1和通项公式.
解答: 解:∵数列{an}的前n项和为Sn=n2+
1
2
n

∴a1=S 1 =1+
1
2
=
3
2

an=Sn-Sn-1
=(n2+
1
2
n
)-[(n-1)2+
1
2
(n-1)
]
=2n-
1
2

n=1时,2n-
1
2
=
3
2
=a1

an=2n-
1
2

∴数列{an}的首项a1=
3
2

∴通项公式an=2n-
1
2
点评:本题考查数列的首项和通项公式的求法,解题时要注意公式an=
S1,n=1
Sn-Sn-1,n≥2
的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a=
3
-1
b=
3
+1,c=2
2
,则角C等于(  )
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n∈R+,且m+n=2,则mn有(  )
A、最大值2B、最大值1
C、最小值1D、最小值2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=sinx2+acosx+
5
8
a
-
3
2
,若在x∈[0,
π
2
]上有f(x)≤1成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)给定数列{cn},如果存在实常数p,q,使得cn+1=pcn+q对于任意n∈N*都成立,我们称数列{cn}是“R族数列”.证明:若数列{bn}的前n项和为是Sn=n2+n,数列{bn}是“R族数列”,并指出它对应的实常数p,q.
(Ⅱ)若数列{an}满足a1=2,an+an+1=2n(n∈N*),求数列{an}前2013项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(1)sin15°-cos15°;
(2)tan21°+tan24°+tan21°tan24°.

查看答案和解析>>

科目:高中数学 来源: 题型:

分类讨论,二次函数y=ax2+bx+c(a≠0)在区间[m,n]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|
ax-5
x2-a
<0}
,若3∈M,5∉M,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=
x
在点(3,
3
)的切线方程为
 

查看答案和解析>>

同步练习册答案