精英家教网 > 高中数学 > 题目详情
15.某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人,陈老师采用A、B两种不同的数学方式分别在甲、乙两个班级进行教改实验,为了解教学效果,期末考试后,陈老师利用随机抽样的方法分别从两个班级中各随机抽取20名学生,并对他们的成绩进行统计,作出茎叶图如图,记成绩不低于90分者为“成绩优秀”.
(1)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的2个均“成绩优秀”的概率;
(2)由以上统计数据填写下面列联表,并判断是否有90%的把握认为“成绩优秀”与教学方式有关.
甲班(A方式)乙班(B方式)总    计
成绩优秀156
成绩不优秀191534
总计202040
附:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d)
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

分析 (1)本题是一个等可能事件的概率,试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件数,列举出结果,满足条件的事件也可以列举出结果,得到概率.
(2)根据所给的数据,列出列联表,根据列联表中的数据,做出观测值,把观测值同临界值表进行比较,得到有90%的把握认为成绩优秀与教学方式有关.

解答 解:(1)由题意知本题是一个等可能事件的概率,
试验发生包含的事件是从不低于86分的成绩中随机抽取两个包含的基本事件是
(86,93)(86,96)(86,97)(86,99)(86,99)
(93,96)(93,97)(93,99)(93,99)(96,97)(96,99)
(96,99)(97,99)(97,99)(99,99)共有15种结果,
符合条件的事件数(93,96)(93,97)(93,99)(93,99)(96,97)(96,99)
(96,99)(97,99)(97,99)(99,99)共有10种结果,
根据等可能事件的概率得到P=$\frac{10}{15}$=$\frac{2}{3}$;
(2)由已知数据得

甲班(A方式)乙班(B方式)总    计
成绩优秀156
成绩不优秀191534
总计202040
根据列联表中的数据,K2=$\frac{40(1×15-5×19)^{2}}{6×34×20×20}$=3.137
由于3.137>2.706,
∴有90%的把握认为:“成绩优秀”与教学方式有关.

点评 本题考查等可能事件的概率,考查列出列联表,考查根据列联表做出观测值,考查临界值表的应用,本题是一个综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=|x+1|
(1)解不等式f(x)>4-|x-1|;
(2)已知a+b=1(a>0,b>0),若|x-m|-f(x)≤$\frac{4}{a}$+$\frac{1}{b}$(m>0)对任意的x∈R恒成立,求实数m的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知四面体ABCD的六条棱中,AC=BD=4,其余的四条棱的长都是3,则此四面体的外接球的表面积为(  )
A.43πB.17πC.34πD.$\frac{17π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a=${∫}_{0}^{π}$(sinx+cosx)dx,且二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)n的所有二项式系数之和为64,则其展开式中含x2项的系数是(  )
A.-192B.192C.-6D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sin(α+$\frac{π}{4}$)+sin(α-$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$
(1)求sinα的值;     
(2)求$\frac{{sin(α-\frac{π}{4})}}{1-cos2α-sin2α}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若$α,β∈({-\frac{π}{2},\frac{π}{2}})$,且tanα,tanβ是方程${x^2}+4\sqrt{3}x+5=0$的两个根,则α+β等于(  )
A.$\frac{π}{3}$或$\frac{4π}{3}$B.$\frac{π}{3}$或$-\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=lnx-a(x-1),g(x)=ex
(1)求当a=1时,函数f(x)的单调区间;
(2)过原点分别作曲线y=f(x)与y=g(x)的切线l1、l2,已知两切线的斜率互为倒数,证明:a=0或$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知曲线C的极坐标方程为ρ=$\frac{2}{\sqrt{1+3si{n}^{2}θ}}$,则C上的点到直线x-2y-4$\sqrt{2}$=0的距离的最小值为$\frac{2\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)为可导函数且满足$\underset{lim}{△x→0}$$\frac{f(1+2△x)-f(1-△x)}{△x}$=3,则函数y=f(x)图象上在点(1,f(1)处的切线的倾斜角为$\frac{π}{4}$.

查看答案和解析>>

同步练习册答案