精英家教网 > 高中数学 > 题目详情
2.已知t为常数,函数f(x)=x2+tln(x+1)有两个极值点a,b(a<b),则(  )
A.f(b)>$\frac{1-2ln2}{4}$B.f(b)<$\frac{1-2ln2}{4}$C.f(b)>$\frac{3+2ln2}{8}$D.f(b)<$\frac{4+3ln2}{8}$

分析 b是方程g(x)=0的根,将t用b表示,消去b得到关于t的函数,研究函数的单调性求出函数的最大值,即可得出结论.

解答 解:∵f(x)=x2+tln(1+x),
∴f′(x)=$\frac{2{x}^{2}+2x+t}{1+x}$(x>-1)
令g(x)=2x2+2x+t,函数的对称轴为x=-$\frac{1}{2}$,g(-1)>0.
∵函数f(x)=x2+tln(x+1)有两个极值点a,b(a<b),
∴g(0)=t>0,-$\frac{1}{2}$<b<0,t=-(2b2+2b),
∴f(b)=b2+tln(1+b)=b2-(2b2+2b)ln(1+b).
设h(x)=x2-(2x2+2x)ln(1+x)(x>-$\frac{1}{2}$),
则h′(x)=2x-2(2x+1)ln(1+x)-2x=-2(2x+1)ln(1+x),
(1)当x∈(-$\frac{1}{2}$,0)时,h′(x)>0,∴h(x)在[-$\frac{1}{2}$,0)单调递增;
(2)当x∈(0,+∞)时,h′(x)<0,h(x)在(0,+∞)单调递减.
∴x∈(-$\frac{1}{2}$,0),h(x)>h(-$\frac{1}{2}$)=$\frac{1-2ln2}{4}$;
故f(b)=h(b)>$\frac{1-2ln2}{4}$.
故选:A.

点评 本题主要考查了利用导数研究函数的单调性,以及利用导数研究函数的极值等有关知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$(a>b>0)的离心率$e=\frac{{\sqrt{6}}}{3}$,过点A(0,-b)和B(a,0)的直线与原点的距离为$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆的方程.
(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.且$\overrightarrow{DE}•\overrightarrow{EC}=0$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:(x+4)2+y2=4,圆D的圆心D在y轴上且与圆C外切,圆D与y轴交于A,B两点,定点P的坐标为(-3,0).
(1)若点D(0,3),求△APB的正切值;
(2)当点D在y轴上运动时,求tan∠APB的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$({1,\frac{{2\sqrt{3}}}{3}})$,离心率为$\frac{{\sqrt{3}}}{3}$,过椭圆的右焦点F作互相垂直的两条直线分别交椭圆于A,B和C,D,且M,N分别为AB,CD的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)证明:直线MN过定点,并求出这个定点;
(Ⅲ)当AB,CD的斜率存在时,求△FMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.以正四面体各面中心为顶点的新四面体的棱长是原四面体棱长的(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知S-ABCD为正四棱锥,AB=2,SA=3,求棱锥的高和棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平行四边形ABCD中,AC与DB交于点O,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(Ⅰ)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AC}$和$\overrightarrow{BD}$;
(Ⅱ)若E为DO的中点,$\overrightarrow{AE}$=$λ\overrightarrow{a}$+$μ\overrightarrow{b}$,求λ+μ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明不等式:
(1)当x∈[-1,0]时,求证:$\frac{1+x}{1-x}$≤e2x≤$\frac{1}{(1-x)^{2}}$;
(2)已知函数f(x)=xlnx,设A(x1,f(x1)),B(x2,f(x2)),且x1≠x2,证明:$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<f′($\frac{{x}_{1}+{x}_{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图:A,B,C是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的顶点,点F(c,0)为椭圆的右焦点,离心率为$\frac{{\sqrt{3}}}{2}$,且椭圆过点$({2\sqrt{3},1})$.
(Ⅰ)求椭圆的方程;
(Ⅱ)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为k1,证明:$2{k_1}=k+\frac{1}{2}$.

查看答案和解析>>

同步练习册答案