精英家教网 > 高中数学 > 题目详情
14.在平行四边形ABCD中,AC与DB交于点O,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(Ⅰ)试用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{AC}$和$\overrightarrow{BD}$;
(Ⅱ)若E为DO的中点,$\overrightarrow{AE}$=$λ\overrightarrow{a}$+$μ\overrightarrow{b}$,求λ+μ的值.

分析 (Ⅰ)根据平行四边形对边平行且相等,利用平面向量的线性表示,即可求出结果;
(Ⅱ)根据平面向量的线性运算与线性表示,即可求出λ与μ的值.

解答 解:(Ⅰ)平行四边形ABCD中,AC与DB交于点O,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,
所以$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{AD}$=$\overrightarrow{a}$+$\overrightarrow{b}$,
$\overrightarrow{BD}$=$\overrightarrow{AD}$-$\overrightarrow{AB}$=$\overrightarrow{b}$-$\overrightarrow{a}$;
(Ⅱ)当E为DO的中点时,$\overrightarrow{DE}$=$\frac{1}{2}$$\overrightarrow{DO}$=$\frac{1}{4}$$\overrightarrow{DB}$=-$\frac{1}{4}$$\overrightarrow{BD}$,
所以$\overrightarrow{AE}$=$\overrightarrow{AD}$+$\overrightarrow{DE}$=$\overrightarrow{AD}$-$\frac{1}{4}$$\overrightarrow{BD}$=$\overrightarrow{b}$-$\frac{1}{4}$($\overrightarrow{b}$-$\overrightarrow{a}$)=$\frac{1}{4}$$\overrightarrow{a}$+$\frac{3}{4}$$\overrightarrow{b}$;
又$\overrightarrow{AE}$=$λ\overrightarrow{a}$+$μ\overrightarrow{b}$,
所以λ=$\frac{1}{4}$,μ=$\frac{3}{4}$,
∴λ+μ=1.

点评 本题考查了平面向量的线性运算与线性表示的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,抛物线y2=8x的焦点是该椭圆C的一个顶点,直线l:y=k(x+1)(k>0)与椭圆C相交于A(x1,y1),B(x2,y2)两点.
(1)求椭圆C的标准方程;
(2)若线段AB的中点的横坐标为-$\frac{1}{2}$,求直线l的斜率以及弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.直线x-ky+1=0与圆x2+y2=1的位置关系是(  )
A.相交B.相离C.相交或相切D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知t为常数,函数f(x)=x2+tln(x+1)有两个极值点a,b(a<b),则(  )
A.f(b)>$\frac{1-2ln2}{4}$B.f(b)<$\frac{1-2ln2}{4}$C.f(b)>$\frac{3+2ln2}{8}$D.f(b)<$\frac{4+3ln2}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的长轴长为4,椭圆的离心率为$\frac{\sqrt{3}}{2}$.设点M是椭圆上不在坐标轴上的任意一点,过点M的直线分别交x轴、y轴于A、B两点上,且满足$\overrightarrow{AM}$=$\frac{1}{3}$$\overrightarrow{AB}$.
(1)求证:线段AB的长是一定值;
(2)若点N是点M关于原点的对称点,一过原点O且与直线AB平行的直线与椭圆交于P、Q两点(如图),求四边形MPNQ面积的最大值,并求出此时直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x1,x2是方程x2-3x+1=0的两个实根,则$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=3;x${\;}_{1}^{2}$+$\frac{1}{{x}_{1}^{2}}$=7.x${\;}_{1}^{3}$+8x2=21.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=|x2-4x+3|,若关于x的方程f(x)-a=x至少有三个不相等的实数根,则实数a的取值范围是[-1,-$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,D为AC上一点,且$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{DC}$,P为BD上一点,且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m>0,n>0),则$\frac{1}{m}$+$\frac{1}{n}$的最小值是(  )
A.10B.9C.8D.11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求经过圆x2+y2-4x-2y-5=0的圆心且与直线3x-4y+6=0垂直的直线方程.

查看答案和解析>>

同步练习册答案