·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾¹ýµã$£¨{1£¬\frac{{2\sqrt{3}}}{3}}£©$£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©ÓÒ½¹µãF£¨1£¬0£©£¬µ±AB£¬CDµÄбÂÊ´æÔÚʱ£¬ÉèABµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£¬µÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬ÓÉΤ´ï¶¨ÀíÇó³öM£¨$\frac{3{k}^{2}}{3{k}^{2}+2}£¬\frac{-2k}{3{k}^{2}+2}$£©£¬½«k»»Îª-$\frac{1}{k}$£¬µÃN£¨$\frac{3}{2{k}^{2}+3}£¬\frac{2k}{2{k}^{2}+3}$£©£¬ÓÉ´ËÄÜÇó³öÖ±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£»µ±Ö±ÏßAB£¬CDµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßMNΪxÖᣬֱÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
£¨¢ó£©É趨µãΪE£¬Çó³öS¡÷FAN=$\frac{|2k£¨{k}^{2}+1£©|}{£¨3{k}^{2}+2£©£¨2{k}^{2}+2£©}$£¬Éèk£¾0£¬Áî$\frac{{k}^{2}+1}{k}=t$£¬ÔòS=$\frac{2}{6t+\frac{1}{t}}$£¬Áîu£¨t£©=6t+$\frac{1}{t}$£¬ÀûÓõ¼ÊýÐÔÖÊÄÜÇó³ö¡÷FMNÃæ»ýµÄ×î´óÖµ£®
½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾¹ýµã$£¨{1£¬\frac{{2\sqrt{3}}}{3}}£©$£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{£¨\frac{2\sqrt{3}}{3}£©^{2}}{{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{a}^{2}=3}\\{{b}^{2}=2}\\{{c}^{2}=1}\end{array}\right.$£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£®
Ö¤Ã÷£º£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÓÒ½¹µãFµÄ×ø±êΪ£¨1£¬0£©£¬
£¨i£©µ±AB£¬CDµÄбÂÊ´æÔÚʱ£¬ÉèABµÄбÂÊΪk£¬ÔòCDµÄбÂÊΪ-$\frac{1}{k}$£¬
ÉèABµÄ·½³ÌΪy=k£¨x-1£©£¬
´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£¬µÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{6{k}^{2}}{3{k}^{2}+2}$£¬${x}_{1}{x}_{2}=\frac{3{k}^{2}-6}{3{k}^{2}+2}$£¬
¡à${x}_{M}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{3{k}^{2}}{3{k}^{2}+2}$£¬${y}_{M}=k£¨{x}_{M}-1£©=\frac{-2k}{3{k}^{2}+2}$£¬
¡àM£¨$\frac{3{k}^{2}}{3{k}^{2}+2}£¬\frac{-2k}{3{k}^{2}+2}$£©£¬
½«k»»Îª-$\frac{1}{k}$£¬µÃN£¨$\frac{3}{2{k}^{2}+3}£¬\frac{2k}{2{k}^{2}+3}$£©£¬
¢Ùµ±k¡Ù¡À1ʱ£¬${k}_{MN}=\frac{\frac{2k}{2{k}^{2}+3}+\frac{2k}{3{k}^{2}+2}}{\frac{3}{2{k}^{2}+3}-\frac{3{k}^{2}}{3{k}^{2}+2}}$=$\frac{5k}{3-3{k}^{2}}$£¬
´Ëʱ£¬Ö±ÏßMNµÄ·½³ÌΪy-$\frac{2k}{2{k}^{2}+3}$=$\frac{5k}{3-3{k}^{2}}$£¨x-$\frac{3}{2{k}^{2}+3}$£©£¬
»¯¼ò£¬µÃy=$\frac{-5k}{3{k}^{2}-3}$£¨x-$\frac{3}{5}$£©£¬
¡àÖ±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
¢Úµ±k=¡À1ʱ£¬Ö±ÏßMNµÄ·½³ÌΪx=$\frac{3}{5}$£¬Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
£¨ii£©µ±Ö±ÏßAB£¬CDµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßMNΪxÖᣬ
Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
×ÛÉÏ£¬Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
½â£º£¨¢ó£©É趨µãΪE£¬
ÓÉ£¨¢ò£©ÖªS¡÷FAN=$\frac{1}{2}$|EF|•|yM-yN|=$\frac{1}{2}¡Á\frac{2}{5}•|\frac{-2k}{3{k}^{2}+2}-\frac{2k}{2{k}^{2}+3}|$=$\frac{|2k£¨{k}^{2}+1£©|}{£¨3{k}^{2}+2£©£¨2{k}^{2}+2£©}$£¬
²»·ÁÉèk£¾0£¬ÔòS=$\frac{2k£¨{k}^{2}+1£©}{£¨3{k}^{2}+2£©£¨2{k}^{2}+3£©}$£¬
Áî$\frac{{k}^{2}+1}{k}=t$£¬Ôòt=k+$\frac{1}{k}$¡Ý2£¬
ÓÚÊÇS=$\frac{2k£¨{k}^{2}+1£©}{6£¨{k}^{2}+1£©+{k}^{2}}$=$\frac{2t}{6{t}^{2}+1}$=$\frac{2}{6t+\frac{1}{t}}$£¬
Áîu£¨t£©=6t+$\frac{1}{t}$£¬Ôòu¡ä£¨t£©=6-$\frac{1}{{t}^{2}}$£¬µ±t¡Ý2ʱ£¬u¡ä£¨t£©£¾0£¬
¡àu£¨t£©=6t+$\frac{1}{t}$ÔÚ[2£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¡àu¡Ýu£¨2£©=$\frac{25}{2}$£¬
¡à${S}_{¡÷FMN}=\frac{2}{6t+\frac{1}{t}}$¡Ü$\frac{2}{\frac{25}{2}}$=$\frac{4}{25}$£¬
¡à¡÷FMNÃæ»ýµÄ×î´óֵΪ$\frac{4}{25}$£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß¹ý¶¨µãµÄÖ¤Ã÷£¬¿¼²éÈý½ÇÐÎÃæ»ý×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢Ö±Ïß·½·½³Ì¡¢ÍÖÔ²ÐÔÖÊ¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢µ¼ÊýÐÔÖʵĺÏÀíÔËÓã®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | 3 | C£® | 2 | D£® | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ïཻ | B£® | ÏàÀë | C£® | Ïཻ»òÏàÇÐ | D£® | ÏàÇÐ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | f£¨b£©£¾$\frac{1-2ln2}{4}$ | B£® | f£¨b£©£¼$\frac{1-2ln2}{4}$ | C£® | f£¨b£©£¾$\frac{3+2ln2}{8}$ | D£® | f£¨b£©£¼$\frac{4+3ln2}{8}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -9M | B£® | 9M | C£® | 27M | D£® | -27M |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com