10£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾­¹ýµã$£¨{1£¬\frac{{2\sqrt{3}}}{3}}£©$£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬¹ýÍÖÔ²µÄÓÒ½¹µãF×÷»¥Ïà´¹Ö±µÄÁ½ÌõÖ±Ïß·Ö±ð½»ÍÖÔ²ÓÚA£¬BºÍC£¬D£¬ÇÒM£¬N·Ö±ðΪAB£¬CDµÄÖе㣮
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Ö¤Ã÷£ºÖ±ÏßMN¹ý¶¨µã£¬²¢Çó³öÕâ¸ö¶¨µã£»
£¨¢ó£©µ±AB£¬CDµÄбÂÊ´æÔÚʱ£¬Çó¡÷FMNÃæ»ýµÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾­¹ýµã$£¨{1£¬\frac{{2\sqrt{3}}}{3}}£©$£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬Áгö·½³Ì×飬Çó³öa£¬b£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì£®
£¨¢ò£©ÓÒ½¹µãF£¨1£¬0£©£¬µ±AB£¬CDµÄбÂÊ´æÔÚʱ£¬ÉèABµÄ·½³ÌΪy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£¬µÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬ÓÉΤ´ï¶¨ÀíÇó³öM£¨$\frac{3{k}^{2}}{3{k}^{2}+2}£¬\frac{-2k}{3{k}^{2}+2}$£©£¬½«k»»Îª-$\frac{1}{k}$£¬µÃN£¨$\frac{3}{2{k}^{2}+3}£¬\frac{2k}{2{k}^{2}+3}$£©£¬ÓÉ´ËÄÜÇó³öÖ±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£»µ±Ö±ÏßAB£¬CDµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßMNΪxÖᣬֱÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
£¨¢ó£©É趨µãΪE£¬Çó³öS¡÷FAN=$\frac{|2k£¨{k}^{2}+1£©|}{£¨3{k}^{2}+2£©£¨2{k}^{2}+2£©}$£¬Éèk£¾0£¬Áî$\frac{{k}^{2}+1}{k}=t$£¬ÔòS=$\frac{2}{6t+\frac{1}{t}}$£¬Áîu£¨t£©=6t+$\frac{1}{t}$£¬ÀûÓõ¼ÊýÐÔÖÊÄÜÇó³ö¡÷FMNÃæ»ýµÄ×î´óÖµ£®

½â´ð ½â£º£¨¢ñ£©¡ßÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$¾­¹ýµã$£¨{1£¬\frac{{2\sqrt{3}}}{3}}£©$£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬
¡à$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{£¨\frac{2\sqrt{3}}{3}£©^{2}}{{b}^{2}}=1}\\{\frac{c}{a}=\frac{\sqrt{3}}{3}}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{{a}^{2}=3}\\{{b}^{2}=2}\\{{c}^{2}=1}\end{array}\right.$£¬
¡àÍÖÔ²·½³ÌΪ$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£®
Ö¤Ã÷£º£¨¢ò£©ÓÉ£¨¢ñ£©ÖªÓÒ½¹µãFµÄ×ø±êΪ£¨1£¬0£©£¬
£¨i£©µ±AB£¬CDµÄбÂÊ´æÔÚʱ£¬ÉèABµÄбÂÊΪk£¬ÔòCDµÄбÂÊΪ-$\frac{1}{k}$£¬
ÉèABµÄ·½³ÌΪy=k£¨x-1£©£¬
´úÈëÍÖÔ²·½³Ì$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$£¬µÃ£¨3k2+2£©x2-6k2x+3k2-6=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôò${x}_{1}+{x}_{2}=\frac{6{k}^{2}}{3{k}^{2}+2}$£¬${x}_{1}{x}_{2}=\frac{3{k}^{2}-6}{3{k}^{2}+2}$£¬
¡à${x}_{M}=\frac{{x}_{1}+{x}_{2}}{2}=\frac{3{k}^{2}}{3{k}^{2}+2}$£¬${y}_{M}=k£¨{x}_{M}-1£©=\frac{-2k}{3{k}^{2}+2}$£¬
¡àM£¨$\frac{3{k}^{2}}{3{k}^{2}+2}£¬\frac{-2k}{3{k}^{2}+2}$£©£¬
½«k»»Îª-$\frac{1}{k}$£¬µÃN£¨$\frac{3}{2{k}^{2}+3}£¬\frac{2k}{2{k}^{2}+3}$£©£¬
¢Ùµ±k¡Ù¡À1ʱ£¬${k}_{MN}=\frac{\frac{2k}{2{k}^{2}+3}+\frac{2k}{3{k}^{2}+2}}{\frac{3}{2{k}^{2}+3}-\frac{3{k}^{2}}{3{k}^{2}+2}}$=$\frac{5k}{3-3{k}^{2}}$£¬
´Ëʱ£¬Ö±ÏßMNµÄ·½³ÌΪy-$\frac{2k}{2{k}^{2}+3}$=$\frac{5k}{3-3{k}^{2}}$£¨x-$\frac{3}{2{k}^{2}+3}$£©£¬
»¯¼ò£¬µÃy=$\frac{-5k}{3{k}^{2}-3}$£¨x-$\frac{3}{5}$£©£¬
¡àÖ±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
¢Úµ±k=¡À1ʱ£¬Ö±ÏßMNµÄ·½³ÌΪx=$\frac{3}{5}$£¬Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
£¨ii£©µ±Ö±ÏßAB£¬CDµÄбÂʲ»´æÔÚʱ£¬Ö±ÏßMNΪxÖᣬ
Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
×ÛÉÏ£¬Ö±ÏßMN¹ý¶¨µã£¨$\frac{3}{5}$£¬0£©£®
½â£º£¨¢ó£©É趨µãΪE£¬
ÓÉ£¨¢ò£©ÖªS¡÷FAN=$\frac{1}{2}$|EF|•|yM-yN|=$\frac{1}{2}¡Á\frac{2}{5}•|\frac{-2k}{3{k}^{2}+2}-\frac{2k}{2{k}^{2}+3}|$=$\frac{|2k£¨{k}^{2}+1£©|}{£¨3{k}^{2}+2£©£¨2{k}^{2}+2£©}$£¬
²»·ÁÉèk£¾0£¬ÔòS=$\frac{2k£¨{k}^{2}+1£©}{£¨3{k}^{2}+2£©£¨2{k}^{2}+3£©}$£¬
Áî$\frac{{k}^{2}+1}{k}=t$£¬Ôòt=k+$\frac{1}{k}$¡Ý2£¬
ÓÚÊÇS=$\frac{2k£¨{k}^{2}+1£©}{6£¨{k}^{2}+1£©+{k}^{2}}$=$\frac{2t}{6{t}^{2}+1}$=$\frac{2}{6t+\frac{1}{t}}$£¬
Áîu£¨t£©=6t+$\frac{1}{t}$£¬Ôòu¡ä£¨t£©=6-$\frac{1}{{t}^{2}}$£¬µ±t¡Ý2ʱ£¬u¡ä£¨t£©£¾0£¬
¡àu£¨t£©=6t+$\frac{1}{t}$ÔÚ[2£¬+¡Þ£©ÉÏÊÇÔöº¯Êý£¬
¡àu¡Ýu£¨2£©=$\frac{25}{2}$£¬
¡à${S}_{¡÷FMN}=\frac{2}{6t+\frac{1}{t}}$¡Ü$\frac{2}{\frac{25}{2}}$=$\frac{4}{25}$£¬
¡à¡÷FMNÃæ»ýµÄ×î´óֵΪ$\frac{4}{25}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬¿¼²éÖ±Ïß¹ý¶¨µãµÄÖ¤Ã÷£¬¿¼²éÈý½ÇÐÎÃæ»ý×î´óÖµµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâΤ´ï¶¨Àí¡¢Ö±Ïß·½·½³Ì¡¢ÍÖÔ²ÐÔÖÊ¡¢ÏÒ³¤¹«Ê½¡¢»»Ôª·¨¡¢µ¼ÊýÐÔÖʵĺÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁÐÃüÌâÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
£¨1£©¶Ô·ÖÀà±äÁ¿XÓëYµÄËæ»ú±äÁ¿K2µÄ¹Û²âÖµkÀ´Ëµ£¬kԽС£¬Åжϡ°XÓëYÓйØÏµ¡±µÄ°ÑÎÕÔ½´ó£»
£¨2£©Èô½«Ò»×éÑù±¾Êý¾ÝÖеÄÿ¸öÊý¾Ý¶¼¼ÓÉÏͬһ¸ö³£Êýºó£¬ÔòÑù±¾µÄ·½²î²»±ä£»
£¨3£©Èôa£¾0£¬b£¾0ÇÒ$\frac{2}{a}$+$\frac{1}{b}$=1£¬Ôòa+b¡Ý4£»
£¨4£©ÉèËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬1£©£¬ÈôP£¨¦Î£¾1£©=p£¬ÔòP£¨-1£¼¦Î£¼0£©=$\frac{1}{2}$-p£®
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ö±Ïßy=mÓ뺯Êýy=x2-3|x-2|-5x+1µÄͼÏóÓÐ3¸ö½»µã£¬ÔòmµÄֵΪ-5»ò-6£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÉèÖ±Ïßy=kx+2ºÍÔ²x2+y2=2£¬µ±kΪºÎֵʱ£¬Ö±ÏßÓëÔ²£¨1£©ÏàÇУ»£¨2£©Ïཻ£»£¨3£©ÏàÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Ö±Ïßx-ky+1=0ÓëÔ²x2+y2=1µÄλÖùØÏµÊÇ£¨¡¡¡¡£©
A£®ÏཻB£®ÏàÀëC£®Ïཻ»òÏàÇÐD£®ÏàÇÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¶¨µãD£¨1£¬0£©£¬MÊÇÔ²C£º£¨x+1£©2+y2=16ÉÏÈÎÒâÒ»µã£¬Ïß¶ÎMDµÄÖд¹ÏßÓë°ë¾¶MC½»ÓÚµãP£¬É趯µãPµÄ¹ì¼£ÎªÇúÏßR£®
£¨1£©ÇóÇúÏßRµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßlÓëÔ²O£ºx2+y2=1ÏàÇУ¬ÓëÇúÏßRÏཻÓÚA£¬BÁ½µã£¬Çó¡÷AOBÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªtΪ³£Êý£¬º¯Êýf£¨x£©=x2+tln£¨x+1£©ÓÐÁ½¸ö¼«Öµµãa£¬b£¨a£¼b£©£¬Ôò£¨¡¡¡¡£©
A£®f£¨b£©£¾$\frac{1-2ln2}{4}$B£®f£¨b£©£¼$\frac{1-2ln2}{4}$C£®f£¨b£©£¾$\frac{3+2ln2}{8}$D£®f£¨b£©£¼$\frac{4+3ln2}{8}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªx1£¬x2ÊÇ·½³Ìx2-3x+1=0µÄÁ½¸öʵ¸ù£¬Ôò$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=3£»x${\;}_{1}^{2}$+$\frac{1}{{x}_{1}^{2}}$=7£®x${\;}_{1}^{3}$+8x2=21£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈôÈý½×ÐÐÁÐʽ$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}|$=M£¬Ôò$|\begin{array}{l}{-3{a}_{11}}&{-3{a}_{12}}&{-3{a}_{13}}\\{-3{a}_{21}}&{-3{a}_{22}}&{-3{a}_{23}}\\{-3{a}_{31}}&{-3{a}_{32}}&{-3{a}_{33}}\end{array}|$=£¨¡¡¡¡£©
A£®-9MB£®9MC£®27MD£®-27M

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸