精英家教网 > 高中数学 > 题目详情
20.函数f(x)=ax3+bsinx+1,若f($\sqrt{3}$)=2,则f(-$\sqrt{3}$)的值为0.

分析 根据函数奇偶性的性质,利用方程组法进行求解即可.

解答 解:∵f(x)=ax3+bsinx+1,
∴f(x)-1=ax3+bsinx是奇函数,
则f(-x)-1=-[f(x)-1]=-f(x)+1,
则f(-x)=2-f(x),
∵f($\sqrt{3}$)=2,
∴f(-$\sqrt{3}$)=2-f($\sqrt{3}$)=2-2=0,
故答案为:0.

点评 本题主要考查函数值的计算,根据进行转化,可以函数的奇偶性进行求解是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)是定义在R上的奇函数,若f(2016)=2,则f(-2016)=(  )
A.2B.-2C.0D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)为定义在R上的偶函数,当x≥0时,有f(x+3)=-f(x),且当x∈[0,3)时,f(x)=log4(x+1),给出下列命题:
①f(2015)>f(2014);                  
②函数f(x)在定义域上是周期为3的函数;
③直线x-3y=0与函数f(x)的图象有2个交点;        
④函数f(x)的值域为[0,1).
其中不正确的命题个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.非零向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrow b}$|=2,<$\overrightarrow a$,$\overrightarrow b$>=30°,且对?λ>0,且|$\overrightarrow a$-λ$\overrightarrow b}$|≥|${\overrightarrow a$-$\overrightarrow b}$|恒成立,则$\overrightarrow a$•$\overrightarrow b$=(  )
A.4B.$2\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知随机变量ξ+η=7,若ξ~B(10,0.6),则E(η),D(η)分别是(  )
A.1和2.4B.2和2.4C.2和5.6D.6和5.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=sin($\frac{π}{6}$-x)sinx的最大值是$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.执行如图所示的程序框图,则输出的结果是(  )
A.29B.30C.31D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:y2=2px(p>0)的焦点为F,点M(x0,4)是C上一点,且|MF|=4.
(1)求点M的坐标和抛物线C的方程.
(2)若斜率为-1的直线与抛物线C交于不同的两点A(x1,y1),B(x2,y2),且y1≤0,y2≤0,当△MAB面积最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{lnx}{x}$.
(Ⅰ)求函数y=f(x)在点(1,0)处的切线方程;
(Ⅱ)设实数k使得f(x)<kx恒成立,求k的取值范围;
(Ⅲ)设g(x)=f(x)-kx(k∈R),求函数g(x)在区间$[\frac{1}{e},{e^2}]$上的零点个数.

查看答案和解析>>

同步练习册答案