精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*
(1)证明:数列{$\frac{{a}_{n}}{n}$}是等差数列;
(2)求{an}的通项公式.

分析 (1)由nan+1=(n+1)an+n(n+1),n∈N*.两边除以n(n+1)化为$\frac{{a}_{n+1}}{n+1}-\frac{{a}_{n}}{n}$=1,即可证明;
(2)由(1)利用等差数列的通项公式即可得出.

解答 (1)证明:∵nan+1=(n+1)an+n(n+1),n∈N*
∴$\frac{{a}_{n+1}}{n+1}-\frac{{a}_{n}}{n}$=1,
∴数列{$\frac{{a}_{n}}{n}$}是等差数列,首项为1,公差为1.
∴数列{$\frac{{a}_{n}}{n}$}是等差数列;
(2)解:由(1)可得:$\frac{{a}_{n}}{n}$=1+n-1=n,
∴${a}_{n}={n}^{2}$.

点评 本题考查了递推式的应用、等差数列的通项公式,考查了变形能力,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知c>a>b>0,求证:$\frac{a}{c-a}$>$\frac{b}{c-b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设a∈R,函数f(x)=ax2+x-a(|x|≤1).
(1)若|a|≤1,试证:|f(x)|≤$\frac{5}{4}$;
(2)若函数f(x)的最大值为$\frac{17}{8}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,若n,an,Sn构成等差数列.
(1)求证:数列{an+1}是等比数列;
(2)求{an}的通项公式,并求使Sn>2015成立的最小n;
(3)求证:$\frac{n}{2}$-$\frac{1}{3}$<$\sum_{k=1}^{n}$$\frac{{a}_{k}}{{a}_{k+1}}$<$\frac{n}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,角A、B、C所对的边分别为a、b、c,下列结论正确序号有②④⑤
①若O为重心,则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AB}$=($\overrightarrow{OB}$+$\overrightarrow{OC}$)•$\overrightarrow{BC}$=($\overrightarrow{OC}$+$\overrightarrow{OA}$)•$\overrightarrow{CA}$.
②若I为内心,则a$\overrightarrow{IA}$+b$\overrightarrow{IB}$+c$\overrightarrow{IC}$=$\overrightarrow{0}$
③若O为外心,则$\frac{\overrightarrow{OA}}{a}$+$\frac{\overrightarrow{OB}}{b}$+$\frac{\overrightarrow{OC}}{c}$=$\overrightarrow{0}$.
④若H为垂心,则$\overrightarrow{HA}$•$\overrightarrow{HB}$=$\overrightarrow{HB}$•$\overrightarrow{HC}$=$\overrightarrow{HC}$•$\overrightarrow{HA}$;
⑤若O为外心,H为垂心,则$\overrightarrow{OH}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和为Sn=n2-12n
(1)求证:{an}是等差数列;
(2)求数列{|an|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.关于x的方程2x2+(3a-7)x+(3+a-2a2)<0的解集中一个元素是0,求a的取值范围并用a表示出该不等式解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设A={1,2,3,4,5,6},B={7,8,9,…,n},在A中取三个数,B中取两个数组成五个元素的集合Ai,i=1,2,…,20,若|Ai∩Aj|≤2,1≤j<i≤20,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,四面体 ABCD的一条棱长为 x,其余棱长均为 1,记四面体 ABCD的体积为F(x),则函数F(x)的单调增区间是$(0,\frac{\sqrt{6}}{2}]$,;最大值为$\frac{1}{8}$.

查看答案和解析>>

同步练习册答案