精英家教网 > 高中数学 > 题目详情
17.已知两点A(-3,4),B(3,2),过点C(2,-1)的直线l与线段AB有公共点,则直线l的斜率k的取值范围(  )
A.k≤-3或k≥1B.k≤-1或k≥3C.-3≤k≤1D.-1≤k≤3

分析 根据题意,画出图形,结合图形,求出满足条件的直线l斜率k的取值范围.

解答 解:如图所示,
∵A(-3,4),B(3,2),C(2,-1),
∴kAC=$\frac{-1-4}{2+3}$=-1,
kBC=$\frac{-1-2}{2-3}$=3;
要使过点C的直线l与线段AB有公共点,
则直线l的斜率k的取值范围是k≤-1或k≥3.
故选:B.

点评 本题考查了已知两点的坐标求直线斜率的应用问题,也考查了数形结合的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=2sinωx在区间[-$\frac{π}{4}$,$\frac{π}{6}$]上的最小值为-2,则ω的取值范围为(-∞,-3]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.不等式x(9-x)>0的解集是(0,9).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C1:y=ax3-6x2+12x(a≠0)与曲线C2:y=ex.若曲线C1有极值,则a的范围是a<1且a≠0;若曲线C1和C2在x=1处的两条切线互相垂直,则实数a的值为-$\frac{1}{3e}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列数列中为递增数列的是(  )
A.{sinnπ}B.{n2-9n+5}C.{$\frac{2n+1}{{n}^{2}}$}D.{$\frac{{n}^{2}}{{n}^{2}+1}$}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=4,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,求
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)(3$\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+2$\overrightarrow{b}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=$\sqrt{x}$+$\sqrt{x+1}$的定义域和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.过点A(-1,-2)且到原点距离为1的直线方程为x=-1或3x-4y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知不等式x2+bx+x>0的解集为{x|x<-2或x>-1}.
(1)求b和c的值.
(2)求不等式cx2+bx+a≤0的解集.

查看答案和解析>>

同步练习册答案