精英家教网 > 高中数学 > 题目详情
7.O为△ABC内一点,记x=S△BOC,y=S△AOC,z=S△AOB,求证:x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$.

分析 设OA=a,OB=b,OC=c,∠AOB=α,∠AOC=β,用a,b,c,α,β表示出x,y,z,求出x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$的坐标.

解答 解:设OA=a,OB=b,OC=c,∠AOB=α,∠AOC=β,
则A(a,0),B(bcosα,bsinα),C(ccosβ,-csinβ).
∴x=S△BOC=$\frac{1}{2}bc$sin(2π-α-β)=-$\frac{1}{2}$bcsin(α+β)=-$\frac{1}{2}$bcsinαcosβ-$\frac{1}{2}$bccosαsinβ,y=S△AOC=$\frac{1}{2}acsinβ$,z=S△AOB=$\frac{1}{2}absinα$.
∴x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=(-$\frac{1}{2}$bcsinαcosβ-$\frac{1}{2}$bccosαsinβ,0)+($\frac{1}{2}$abccosαsinβ,$\frac{1}{2}abc$sinαsinβ)+($\frac{1}{2}$abcsinαcosβ,-$\frac{1}{2}abc$sinαsinβ)=(0,0).
∴x•$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$=$\overrightarrow{0}$.

点评 本题考查了向量的坐标运算,向量在解中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,函数g(x)=sin(|x|),则使方程f(x)=g(x)在[-10,10]内根的个数为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合A={x|x∈Z},B={x|0<x<3},则A∩B=(  )
A.{x|0<x<3}B.{1,2}C.{x|1≤x≤2}D.{x|x∈Z}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\frac{3}{a}+\frac{2}{b}$=2(a>0,b>0),则ab的最小值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=lnx+a(x2-3x+2),其中a∈R.
(1)讨论函数f(x)的单调性;
(2)若a>0,对?x>1,f(x)≥0成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在直三棱柱ABC-A1B1C1中,D是AB的中点,且AA1=AC=3,BC1=AB=5.
(1)求证:AC1∥平面CDB1
(2)求证:BC⊥AC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数y=loga(1-ax)的定义域是(0,+∞),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,2cosx),定义函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$-1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调递减区间;
(3)试说明函数y=f(x)可由函数y=sin2x的图象经过怎样的变换得到?
(4)若函数f(x)的图象关于x=x0对称,且0<x0<$\frac{π}{2}$,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要得到y=2sin(2x+$\frac{2π}{3}$)的图象,需要将函数y=2sin(2x-$\frac{2π}{3}$)的图象(  )
A.向左平移$\frac{2π}{3}$个单位B.向右平移$\frac{2π}{3}$个单位
C.向左平移$\frac{π}{3}$个单位D.向右平移$\frac{π}{3}$个单位

查看答案和解析>>

同步练习册答案