分析 (1)连结OC,推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.
(Ⅱ)设点O到平面ACD的距离为h,由VO-ACD=VA-OCD,能求出点O到平面ACD的距离.
解答
证明:(1)连结OC,
∵△ABD为等边三角形,O为BD的中点,
∴AO⊥BD.
∵△ABD和△CBD为等边三角形,O为BD的中点,$AB=2,AC=\sqrt{6}$,
∴$AO=CO=\sqrt{3}$.
在△AOC中,∵AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.
∵BD∩OC=0,∴AO⊥平面BCD. …(6分)
解:(Ⅱ)设点O到平面ACD的距离为h.
∵VO-ACD=VA-OCD,∴$\frac{1}{3}{S_{△OCD}}•AO$.
在△ACD中,AD=CD=2,
$AC=\sqrt{6}$${S_{△ACD}}=\frac{1}{2}\sqrt{6}•\sqrt{{2^2}-{{({\frac{{\sqrt{6}}}{2}})}^2}}=\frac{{\sqrt{15}}}{2}$.
而$AO=\sqrt{3}$,${S_{△OCD}}=\frac{{\sqrt{3}}}{2}$,∴$h=\frac{{{S_{△OCD}}}}{{{S_{△ACD}}}}•AO=\frac{{\sqrt{15}}}{5}$.
∴点O到平面ACD的距离为$\frac{{\sqrt{15}}}{5}$.…(12分)
点评 本题考查线面垂直的证明,考查点到平面的距离的求法,是中档题,解题时要认真审题,注意等体积法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源:2017届重庆市高三文上适应性考试一数学试卷(解析版) 题型:解答题
某蛋糕店每天制作生日蛋糕若干个,每个生日蛋糕的成本为50元,然后以每个100元的价格出售,如果当天卖不完,剩下的蛋糕作垃圾处理.现需决策此蛋糕店每天应该制作几个生日蛋糕,为此搜集并整理了100天生日蛋糕的日需求量(单位:个),得到如图所示的柱状图,以100天记录的各需求量的频率作为每天各需求量发生的概率.若蛋糕店一天制作17个生日蛋糕.
![]()
(1)求当天的利润
(单位:元)关于当天需求量
(单位:个,
)的函数解析式;
(2)求当天的利润不低于750元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{y^2}{2}-\frac{x^2}{4}=1$ | B. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ | C. | $\frac{y^2}{4}-\frac{x^2}{2}=1$ | D. | $\frac{x^2}{2}-\frac{y^2}{4}=1$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com