分析 a1<0,a203+a204>0,a203•a204<0,可得公差d>0,a203<0,a204>0,再利用求和公式及其性质即可得出.
解答 解:∵a1<0,a203+a204>0,a203•a204<0,
∴公差d>0,a203<0,a204>0,
∴S406=$\frac{406({a}_{1}+{a}_{406})}{2}$=203(a203+a204)>0,
S405=$\frac{405({a}_{1}+{a}_{405})}{2}$=405a203<0,
则使前n项和Sn<0的最大自然数n=405.
故答案为:405.
点评 本题考查了等差数列的通项公式性质及其求和公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1007 | B. | 1006 | C. | 2014 | D. | 2013 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com