精英家教网 > 高中数学 > 题目详情
已知函数f(x)=alnx-
1
x
(a∈R)
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线y=-
1
2
x垂直,求切线方程;
(2)讨论f(x)的单调性;
(3)当a=1,且x≥2时,证明f(x-1)≤2x-5.
考点:利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(1)求出原函数的导函数,由导数值等于2求得a的值,则切点可求,代入直线方程的点斜式求得切线方程;
(2)求出元函数的导函数,可得当a≥0时导函数在定义域内大于0恒成立,当a<0时求出导函数的零点,由零点对函数的定义域分段,根据导函数在各区间段内的符号得到函数的单调区间;
(3)令g(x)=f(x-1)-(2x-5),求其导函数,得到g′(x)<0,则g(x)在[2,+∞)上递减,从而证得答案.
解答: (1)解:∵f(x)=alnx-
1
x

f(x)=
a
x
+
1
x2

由已知得f′(1)=a+1=2,则a=1,那么切点为(1,-1).
故切线方程为y+1=2(x-1),即2x-y-3=0;
(2)解:由于f(x)=
a
x
+
1
x2
=
ax+1
x2
(x>0)

当a≥0时,恒有f′(x)>0,那么f(x)在(0,+∞)上递增;
当a<0时,由f′(x)=0,得x=-
1
a

x∈(0,-
1
a
)
,则f′(x)>0,那么f(x)在(0,-
1
a
)
 递增.
x∈(-
1
a
,+∞)
,则f′(x)<0,那么f(x)在(-
1
a
,+∞)
递减;
(3)证明:当a=1时,令g(x)=f(x-1)-(2x-5),
g(x)=ln(x-1)-
1
x-1
-2x+5

g(x)=
1
x-1
+
1
(x-1)2
-2
=-
(2x-1)(x-2)
(x-1)2

当x≥2时,g′(x)<0,则g(x)在[2,+∞)上递减,那么g(x)≤g(2)=0.
故当a=1且x≥2时,f(x-1)≤(2x-5).
点评:本题考查了利用导数求曲线上某点处的切线方程,考查了利用导数研究函数的单调性,训练了利用构造函数法证明不等式,是压轴题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线y2=4x的焦点为F,点P(x,y)为该抛物线上的动点,O为坐标原点,则
|PF|
|PO|
的最小值是(  )
A、
2
2
B、
3
2
C、
5
2
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex(ax2+m)(其中a,m是实数).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若a=0,m=1,函数f(x)的图象上有三个点:A(x1,f(x1),B(x2,f(x2),C(x3,f(x3),
满足:x1<x2<x3,试判断A,B,C三点是否在同一条直线上,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数g(x)=ax3+bx2+cx及其g′(x)的图象分别如图1、2所示.若f(x)=g(x)-mg′(x)在区间[2,+∞)上单调递增,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:内接于⊙O的△ABC的两条高线AD、BE相交于点H,过圆心O作OF⊥BC于 F,连接AF交OH于点G,并延长CO交圆于点I.
(1)若
OF
AH
,试求λ的值;
(2)若
CH
=x
OA
+y
OB
,试求x+y的值;
(3)若O为原点,点B的坐标为(-4,-3),点C的坐标为C(4,-3),试求点G的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆内接四边形ABCD的对角线BD上有一点E,满足∠BAE=∠CAD.
(Ⅰ)求证:△AEB∽△ACD,△AED∽△ABC;
(Ⅱ)若AB=5,BC=5,CD=3,DA=5.5,AC=6.5,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列前n项和Sn=2n2-3n,求该数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(
x-1
x+1
2,(x≥1),g(x)是f(x)的反函数,记h(x)=
1
g(x)
+
x
+2,求:h(x)的解析式及其最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是菱形,且AC=AB=2,AM⊥平面ABCD,MA∥NC,MA=3NC=3.
(Ⅰ)若点P在AM上,且MP=2PA,求证:OP∥平面MND;
(Ⅱ)求二面角B-MN-D的余弦值.

查看答案和解析>>

同步练习册答案