精英家教网 > 高中数学 > 题目详情
8.设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当x∈(-2,0)时,f(x)=2x,则f(2015)-f(2012)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.2D.-2

分析 由f(x)=f(x+4)得出f(x)是周期为4的函数,再由f(x)是奇函数,求出f(0)=0,从而求出f(2015)与f(2012)的值.

解答 解:∵f(x)=f(x+4),
∴函数f(x)是周期为4的周期函数,
又∵函数f(x)是定义在R上奇函数,
∴f(0)=0,
又∵2015=4•504-1,2012=4•503,
∴f(2015)=f(-1)=2-1=$\frac{1}{2}$,
f(2014)=f(0)=0,
∴f(2015)-f(2012)=$\frac{1}{2}$.
故选:B

点评 本题考查函数的奇偶性、周期性及函数求值,考查学生综合运用知识分析解决问题的能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.下面四组表示的是同一函数的是(  )
A.$f(x)=x,g(x)={(\sqrt{x})^2}$B.f(x)=(x-1)0,g(x)=1
C.$f(x)=|x-1|,g(x)=\sqrt{{{(x-1)}^2}}$D.$f(x)=\sqrt{x-1}\sqrt{x+1},g(x)=\sqrt{{x^2}-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在锐角三角形ABC中,BC=2,AB=3,则AC的取值范围是(  )
A.(1,$\sqrt{5}$)B.($\sqrt{5}$,$\sqrt{13}$)C.($\sqrt{13}$,5)D.($\sqrt{5}$,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知三个正数a,b,c满足a≤b+c≤3a,3b2≤a(a+c)≤5b2,则$\frac{b-2c}{a}$的最小值是(  )
A.-$\frac{18}{5}$B.-3C.0D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=f(x)在区间[-2,2]上的图象是连续的,且方程f(x)=0在(-2,2)上至少有一个实根,则f(-2)•f(2)的值(  )
A.大于0B.小于0C.等于0D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R,q≠1,q≠0)的等比数列.若a1=(d-2)2,a3=d2,b1=(q-2)2,b3=q2
(1)求数列{an},{bn}的通项公式;
(2)设数列{cn}对任意自然数n均有$\frac{c_1}{b_1}+\frac{c_2}{{2{b_2}}}+\frac{c_3}{{3{b_3}}}+…+\frac{c_n}{{n{b_n}}}={a_{n+1}}$,求c1+c3+c5+…+c2n-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的通项公式an=n2-2n-8(n∈N*),则a4等于(  )
A.1B.2C.0D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知直线l过点(3,1),且倾斜角为直线x-2y-1=0倾斜角的2倍,则直线l的斜截式方程为4x-3y-9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知随机变量ξ服从正态分布N(1,σ2).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为(  )
A.0.8B.0.6C.0.5D.0.4

查看答案和解析>>

同步练习册答案