精英家教网 > 高中数学 > 题目详情
6.已知点P(1,m)是顶点在坐标原点的抛物线上一点,若点P到该抛物线焦点F的距离为2,则该抛物线方程为y2=4x或x2=2(2±$\sqrt{3}$)y.

分析 讨论若焦点在x轴的正半轴上,设抛物线的方程为y2=2px,若焦点在y轴的正半轴上,可设x2=2ty(p,t>0),求出准线方程,由抛物线的定义,解方程即可得到所求方程.

解答 解:若焦点在x轴的正半轴上,设抛物线的方程为y2=2px,(p>0),
准线的方程为x=-$\frac{p}{2}$,
由抛物线的定义可得2=1+$\frac{p}{2}$,解得p=2,
可得抛物线的方程为y2=4x;
若焦点在y轴的正半轴上,可设x2=2ty(t>0),
准线的方程为y=-$\frac{t}{2}$,
由抛物线的定义可得,2=m+$\frac{t}{2}$,且1=2tm,
解得t=2$±\sqrt{3}$,
可得抛物线的方程为x2=2(2±$\sqrt{3}$)y.
故答案为:y2=4x或x2=2(2±$\sqrt{3}$)y.

点评 本题考查抛物线的方程的求法,注意运用待定系数法,考查解方程的运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.(文)已知等差数列{an}的首项为p,公差为d(d>0).对于不同的自然数n,直线x=an与x轴和指数函数f(x)=($\frac{1}{2}$)x的图象分别交于点An与Bn(如图所示),记Bn的坐标为(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面积分别为s1和s2,一般地记直角梯形AnAn+1Bn+1Bn的面积为sn
(1)求证:数列{sn}是公比绝对值小于1的等比数列;
(2)设数列{an}的首项为p=-1,公差d=1,是否存在这样的正整数n,构成以bn,bn+1,bn+2为边长的三角形?并请说明理由;
(3))设{an}的公差d=1,是否存在这样的实数p使得(1)中无穷等比数列{sn}各项的和S>2010?如果存在,给出一个符合条件的p值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=ax-lnx;g(x)=x3-x2-8x-1
(1)求函数f(x)的单调区间;
(2)若对任意${x_1}∈[1{,^{\;}}e]$,存在${x_2}∈[0{,^{\;}}3]$使得f(x1)≤g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在△ABC中,∠B=30°,AC=2$\sqrt{5}$,D是边AB上一点.
(1)求△ABC的面积的最大值;
(2)若CD=2,△ACD的面积为4,∠ACD为锐角,求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足log2[4cos2(xy)+$\frac{1}{4co{s}^{2}(xy)}$]=-y2+4y-3,则ycos4x的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.E,F是等腰直角△ABC斜边AB上的三等分点,则tan∠ECF=$\frac{3}{4}$,cos∠BCF=$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.过双曲线x2-$\frac{{y}^{2}}{2}$=1的右焦点作直线交双曲线于A、B两点,若|AB|=a则这样的直线可以做出几条?
①|AB|=1,这样的直线可以做出0条;
②|AB|=2,这样的直线可以做出1条;
③|AB|=3,这样的直线可以做出2条;
④|AB|=4,这样的直线可以做出3条;
⑤|AB|=5,这样的直线可以做出4条.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义点P(x0,y0)到直线l:ax+by+c=0(a2+b2≠0)的有向距离为d=$\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知点P1、P2到直线l的有向距离分别是d1、d2.以下命题正确的是(  )
A.若d1-d2=0,则直线P1P2与直线l平行
B.若d1+d2=0,则直线P1P2与直线l平行
C.若d1+d2=0,则直线P1P2与直线l垂直
D.若d1•d2<0,则直线P1P2与直线l相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列命题正确的是(  )
A.命题“p或q”为真命题,则命题“p”和命题“q”均为真命题
B.“am2<bm2”是”a<b”的必要不充分条件
C.命题p:存在x0∈R,使得x02+x0+1<0,则¬p:任意x∉R,都有x2+x+1≥0
D.命题“若x2<1,则-1<x<1”的逆否命题是若x≥1或x≤-1,则x2≥1

查看答案和解析>>

同步练习册答案