精英家教网 > 高中数学 > 题目详情
7.命题p:不等式x2-(a+1)x+1>0的解集是R.命题q:函数f(x)=(a+1)x在定义域内是增函数.若p∧q为假命题,p∨q为真命题,求a的取值范围.

分析 由题意可得p,q真时,a的范围,分别由p真q假,p假q真由集合的运算可得.

解答 解:∵命题p:不等式x2-(a+1)x+1>0的解集是R
∴△=(a+1)2-4<0,解得-3<a<1,
∵命题q:函数f(x)=(a+1)x在定义域内是增函数.
∴a+1>1,解得a>0
由p∧q为假命题,p∨q为真命题,可知p,q一真一假,
当p真q假时,由{a|-3<a<1}∩{a|a≤0}={a|-3<a≤0}
当p假q真时,由{a|a≤-3,或a≥1}∩{a|a>0}={a|a≥1}
综上可知a的取值范围为:{a|-3<a≤0,或a≥1}

点评 本题考查复合命题的真假,涉及一元二次不等式的解法和指数函数的单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为(  )
A.100万元B.10万元C.7.5万元D.6.25万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x2-x)ex
(1)求曲线y=f(x)在原点处的切线方程;
(2)若f(x)-ax+e≥0恒成立,求实数a的取值范围;
(3)若方程f(x)=m(m∈R)有两个正实数根x1,x2,求证:|x1-x2|<$\frac{m}{e}$+m+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设U=A∪B={x∈N*|lgx<1|}若A∩(∁UB)={m|m=2n+1,n=0,1,2,3,4},则集合B={2,4,6,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{sinx}{x}$.
(1)求函数f(x)的导数;
(2)求曲线y=f(x)在点M(π,0)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A、B两地的距离是120km,按交通法规规定,A、B两地之间的公路车速应限制在50~100km/h.假设汽油的价格是6元/升,汽车的油耗率为$(3+\frac{x^2}{360})L/h$,司机每小时的工资是42元,设车速x(单位:km/h),如果不考虑其他费用,行车的总费用为y(单位:元).
(1)将y表示为x的函数;
(2)最经济的车速是多少?并求出这次行车的最小费用?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在映射f:A→B中,A=B={(x,y)|x,y∈R},且f:(x,y)→(x+y,x-y),则与A中的元素(1,2)对应的B中的元素为(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知某运动员每次投篮命中的概率都为50%,现采用随机模拟的方法估计该运动员四次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四个随机数为一组,代表四次投篮的结果.经随机模拟产生了20组随机数:
9075   9660   1918   9257    2716    9325    8121    4589   5690    6832
4315   2573   3937   9279    5563    4882    7358    1135   1587    4989
据此估计,该运动员四次投篮恰有两次命中的概率为0.35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=sin({x+\frac{π}{6}})+sin({x-\frac{π}{6}})+cosx+a$的最大值为1.
(1)求常数a的值;
(2)求使f(x)=0成立的x的取值集合.

查看答案和解析>>

同步练习册答案