精英家教网 > 高中数学 > 题目详情
4.一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为(  )
A.100万元B.10万元C.7.5万元D.6.25万元

分析 由直方图可以看出11时至12时的销售额应为9时至10时的销售额的4倍,利用9时至10时的销售额即可求出11时至12时的销售额

解答 解:由直方图可以看出11时至12时的销售额应为9时至10时的销售额的4倍,
因为9时至10时的销售额为2.5万元,
故11时至12时的销售额应为2.5×4=10,
故选:B

点评 本题考查对频率分布直方图的理解,属基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面积为4,
(1)求椭圆的标准方程
(2)设直线l:y=kx+1与椭圆C相交于P,Q两点,是否存在这样的实数k,使得以PQ为直径的圆过原点,若存在,请求出k的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知各项均为正数的等比数列{an},满足${a_1}•{a_7}=\frac{3}{4}$,则a4=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\frac{2ax-{a}^{2}+1}{{x}^{2}+1}$,其中a∈R.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)当a≠0时,求函数f(x)的单调区间与极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l:(k-1)x-2y+5-3k=0(k∈R)恒过定点P,圆C经过点A(4,0)和点P,且圆心在直线x-2y+1=0上.
(1)求定点P的坐标;
(2)求圆C的方程;
(3)已知点P为圆C直径的一个端点,若另一个端点为点Q,问:在y轴上是否存在一点M(0,m),使得△PMQ为直角三角形,若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知{an}是递增的等差数列a3=$\frac{5}{2}$,且a2a4=6.
(1)求{an}的首项a1和公差d;
(2)求{an}的通项和前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则ω=2,φ=-$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2的单调递增区间是(  )
A.(-∞,-1),(0,+∞)B.(-∞,-1)∪(0,+∞)C.(-1,0)D.(-∞,0),(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.命题p:不等式x2-(a+1)x+1>0的解集是R.命题q:函数f(x)=(a+1)x在定义域内是增函数.若p∧q为假命题,p∨q为真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案