精英家教网 > 高中数学 > 题目详情
14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面积为4,
(1)求椭圆的标准方程
(2)设直线l:y=kx+1与椭圆C相交于P,Q两点,是否存在这样的实数k,使得以PQ为直径的圆过原点,若存在,请求出k的值:若不存在,请说明理由.

分析 (1)利用已知条件列出列出求解椭圆的几何量求解椭圆的标准方程.
(2)假设存在这样的实数k,使其满足题意,设P(x1,y1),Q(x2,y2),联立方程组$\left\{\begin{array}{l}\frac{x^2}{16}+\frac{y^2}{4}=1\\ y=kx+1\end{array}\right.$,利用韦达定理,以及$\overrightarrow{OP}•\overrightarrow{OQ}=0$,转化求解即可.

解答 解:(1)由题意得:$\left\{\begin{array}{l}{S_{△OAB}}=\frac{1}{2}ab=4\\ e=\frac{c}{a}=\frac{{\sqrt{3}}}{2}\\{a^2}={b^2}+{c^2}\end{array}\right.$解得$\left\{\begin{array}{l}a=4\\ b=2\\ c=2\sqrt{3}\end{array}\right.$
所以椭圆的标准方程为$\frac{x^2}{16}+\frac{y^2}{4}=1$------------------------------------------------------------(5分)
(2)假设存在这样的实数k,使其满足题意,设P(x1,y1),Q(x2,y2
联立方程组$\left\{\begin{array}{l}\frac{x^2}{16}+\frac{y^2}{4}=1\\ y=kx+1\end{array}\right.$,----------------------------------------------------------------------(6分)
消去y得:(1+4k2)x2+8kx-12=0,
由题意得:x1、x2是此方程的解
所以${x_1}+{x_2}=-\frac{8k}{{1+4{k^2}}},{x_1}{x_2}=-\frac{12}{{1+4{k^2}}}$∴${y_1}{y_2}=(k{x_1}+1)(k{x_2}+1)=\frac{{1-16{k^2}}}{{1+4{k^2}}}$--------------------------------------------------------(9分)
因为PQ为直径的圆过原点,
所以$\overrightarrow{OP}•\overrightarrow{OQ}=0$,即${x_1}{x_2}+{y_1}{y_2}=-\frac{12}{{1+4{k^2}}}+\frac{{1-16{k^2}}}{{1+4{k^2}}}=0$
解得${k^2}=-\frac{11}{16}$,所以假设不成立,
所以,不存在这样的实数k,使得以PQ为直径的圆过原点.-------------------------(12分)

点评 本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中百位、十位、个位数字总是从小到大排列的共有(  )
A.120个B.100个C.300个D.600个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=xlnx-$\frac{1}{2}$ax2有两个极值点,则实数a的取值范围为(  )
A.(-∞,0)B.(0,+∞)C.(0,$\frac{1}{2}$)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆(x-1)2+(y-2)2=5的圆心坐标是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线$\sqrt{3}$x+y+1=0的倾斜角为(  )
A.150oB.60oC.120oD.30o

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列命题:
①点P(-1,4)到直线3x+4y=2的距离为3.
②过点M(-3,5)且在两坐标轴上的截距互为相反数的直线方程为x-y+8=0.
③命题“?x∈R,使得x2-2x+1<0”的否定是真命题;
④“x≤1,且y≤1”是“x+y≤2”的充要条件.
其中不正确命题的序号是①②④.(把你认为不正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x-2y-2=0上;
(2)半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.曲线$y=\sqrt{x}$在$x=\frac{1}{4}$处的切线的倾斜角为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一商场在某日促销活动中,对9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售为(  )
A.100万元B.10万元C.7.5万元D.6.25万元

查看答案和解析>>

同步练习册答案