精英家教网 > 高中数学 > 题目详情
6.分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x-2y-2=0上;
(2)半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点(2,2).

分析 (1)由圆心在直线x-2y-2=0上,可设圆心坐标为(2b+2,b),再根据圆心到两点A(0,4)、B(4,6)的距离相等,求出b的值,可得圆心坐标和半径,从而求得圆的标准方程;
(2)设圆心坐标为(x,y),利用半径为$\sqrt{13}$,且与直线2x+3y-10=0切于点P(2,2),建立方程组,求出圆心坐标,即可求得圆的方程.

解答 解:(1)由于圆心在直线x-2y-2=0上,可设圆心坐标为(2b+2,b),
再根据圆过两点A(0,4),B(4,6),可得[(2b+2)-0]2+(b-4)2=[(2b+2)-4]2+(b-6)2
解得b=1,可得圆心为(4,1),半径为$\sqrt{(4-0)^{2}+(1-4)^{2}}$=5,
故所求的圆的方程为(x-4)2+(y-1)2=25;
(2)设圆心坐标为(x,y),则$\left\{\begin{array}{l}{\frac{y-2}{x-2}•(-\frac{2}{3})=-1}\\{(x-2)^{2}+(y-2)^{2}=13}\end{array}\right.$,
∴x=0,y=-1或x=1.8,y=5.6,
∴圆的方程为(x-4)2+(y-5)2=13或x2+(y+1)2=13

点评 本题主要考查圆的标准方程的求法,求出圆心的坐标,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.cos70°sin80°+cos20°sin10°=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数z满足z=$\frac{2-i}{1-i}$,则z=(  )
A.1+3iB.3-iC.$\frac{3}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{3}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,A(a,0),B(0,b),O(0,0),△OAB的面积为4,
(1)求椭圆的标准方程
(2)设直线l:y=kx+1与椭圆C相交于P,Q两点,是否存在这样的实数k,使得以PQ为直径的圆过原点,若存在,请求出k的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow a{、^{\;}}\overrightarrow b$满足$|\overrightarrow a|=1$,$|\overrightarrow b|=2$,$\overrightarrow a•\overrightarrow b=-\sqrt{3}$,则$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{5π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数y=ax2+bx+c,其中a,b,c∈{0,1,2},则不同的二次函数的个数共有(  )
A.256个B.18个C.16个D.10个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知X的分布列如表:
X-1012
Pabc$\frac{5}{18}$
且b2=ac,$a=\frac{1}{2}$,则E(X)=(  )
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知各项均为正数的等比数列{an},满足${a_1}•{a_7}=\frac{3}{4}$,则a4=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=2sin(ωx+φ)(ω>0,-π<φ<0)的部分图象如图所示,则ω=2,φ=-$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案