| A. | $(\frac{{\sqrt{2}}}{2},1)$ | B. | $(0,\frac{{\sqrt{2}}}{2})$ | C. | $(\frac{{\sqrt{3}}}{2},1)$ | D. | $(0,\frac{{\sqrt{3}}}{2})$ |
分析 由ON⊥MN,可知$\overrightarrow{ON}$•$\overrightarrow{MN}$=x(x-a)+y2=0,代入椭圆方程,求得b和c的关系,利用离心率公式和离心率取值范围,即可求得e的取值范围.
解答 解:椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$,焦点在x轴上,设M(a,0),N(x,y),则$\overrightarrow{ON}$=(x,y),$\overrightarrow{MN}$=(x-a,y).
由ON⊥MN,
∴$\overrightarrow{ON}$•$\overrightarrow{MN}$=x(x-a)+y2=0
由椭圆方程得y2=b2-$\frac{{b}^{2}}{{a}^{2}}$x2代入得c2x2-a3x+a2b2=0.
解得:x=a,或x=$\frac{a{b}^{2}}{{c}^{2}}$,
由题意0<$\frac{a{b}^{2}}{{c}^{2}}$<a.
∴b2<c2.
∴a2-c2<c2.
解得e2=$\frac{{c}^{2}}{{a}^{2}}$>$\frac{1}{2}$,
∵0<e<1
∴$\frac{\sqrt{2}}{2}$<e<1.
离心率e的取值范围为($\frac{\sqrt{2}}{2}$,1).
故选:A.
点评 本题考查椭圆的标准方程及简单几何性质,考查向量与圆锥关系的综合应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 168 | B. | 169 | C. | 170 | D. | 171 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3cm | B. | 4cm | C. | 5cm | D. | 6cm |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com